Coupling Effects in a Manipulator With Both a Flexible Link and Joint

1994 ◽  
Vol 116 (4) ◽  
pp. 826-831 ◽  
Author(s):  
F. Xi ◽  
R. G. Fenton ◽  
B. Tabarrok

The manipulator considered in this paper consists of a flexible link and a flexible joint. The coupling effect between link and joint deflections is investigated. The dynamic equations for the of manipulator are derived and analytical solutions are obtained. It is shown that the natural frequencies and mode shapes of a manipulator with both a flexible link and joint may be parametrized in terms of two ratios. One is the ratio of the moment of inertia of the link to that of the rotor and the other is the ratio of the link stiffness to the joint stiffness. Two special cases are discussed: (1) a manipulator with a relatively flexible link and a relatively rigid joint; and (2) a manipulator with a relatively flexible joint and a relatively rigid link.

Author(s):  
M Vakil ◽  
R Fotouhi ◽  
P N Nikiforuk ◽  
F Heidari

In this article, explicit expressions for the frequency equation, mode shapes, and orthogonality of the mode shapes of a Single Flexible-link Flexible-joint manipulator (SFF) are presented. These explicit expressions are derived in terms of non-dimensional parameters which make them suitable for a sensitivity study; sensitivity study addresses the degree of dependence of the system’s characteristics to each of the parameters. The SFF carries a payload which has both mass and mass moment of inertia. Hence, the closed-form expressions incorporate the effect of payload mass and its mass moment of inertia, that is, the payload mass and its size. To check the accuracy of the derived analytical expressions, the results from these analytical expressions were compared with those obtained from the finite element method. These comparisons showed excellent agreement. By using the closed-form frequency equation presented in this article, a study on the changes in the natural frequencies due to the changes in the joint stiffness is performed. An upper limit for the joint stiffness of a SFF is established such that for the joint stiffness above this limit, the natural frequencies of a SFF are very close to those of its flexible-link rigid-joint counterpart. Therefore, the value of this limit can be used to distinguish a SFF from its flexible-link rigid-joint manipulator counterpart. The findings presented in this article enhance the accuracy and time-efficiency of the dynamic modeling of flexible-link flexible-joint manipulators. These findings also improve the performance of model-based controllers, as the more accurate the dynamic model, the better the performance of the model-based controllers.


Author(s):  
John R. Baker ◽  
Keith E. Rouch

Abstract This paper presents the development of two tapered finite elements for use in torsional vibration analysis of rotor systems. These elements are particularly useful in analysis of systems that have shaft sections with linearly varying diameters. Both elements are defined by two end nodes, and inertia matrices are derived based on a consistent mass formulation. One element assumes a cubic displacement function and has two degrees of freedom at each node: rotation about the shaft’s axis and change in angle of rotation with respect to the axial distance along the shaft. The other element assumes a linear displacement function and has one rotational degree of freedom at each node. The elements are implemented in a computer program. Calculated natural frequencies and mode shapes are compared for both tapered shaft sections and constant diameter sections. These results are compared with results from an available constant diameter element. It is shown that the element derived assuming a cubic displacement function offers much better convergence characteristics in terms of calculated natural frequencies, both for tapered sections and constant diameter sections, than either of the other two elements. The finite element code that was developed for implementation of these elements is specifically designed for torsional vibration analysis of rotor systems. Lumped inertia, lumped stiffness, and gear connection elements necessary for rotor system analysis are also discussed, as well as calculation of natural frequencies, mode shapes, and amplitudes of response due to a harmonic torque input.


2013 ◽  
Vol 20 (2) ◽  
pp. 273-286 ◽  
Author(s):  
Lizhong Xu ◽  
Haifeng Li

In electromechanical integrated toroidal drive, eccentric center errors occur which has important influences on the dynamic behavior of the drive system. Here, the dynamic equations of the drive system with eccentric center are presented. Changes of the natural frequencies and vibrating modes along with eccentric center distance are analyzed. The forced responses of the drive system to eccentric center excitation are investigated. Results show that the eccentric center causes some natural frequencies to increase, and the other natural frequencies to drop. It also causes some vibrations to become weak, and the other vibrations to become strong. The eccentric center has more obvious effects on the dynamic behavior of the planets. The results are useful in design and manufacture of the drive systems.


2006 ◽  
Vol 74 (5) ◽  
pp. 1026-1030 ◽  
Author(s):  
S. Adhikari ◽  
M. I. Friswell ◽  
Y. Lei

Linear dynamics of Euler–Bernoulli beams with nonviscous nonlocal damping is considered. It is assumed that the damping force at a given point in the beam depends on the past history of velocities at different points via convolution integrals over exponentially decaying kernel functions. Conventional viscous and viscoelastic damping models can be obtained as special cases of this general damping model. The equation of motion of the beam with such a general damping model results in a linear partial integro-differential equation. Exact closed-form equations of the natural frequencies and mode shapes of the beam are derived. Numerical examples are provided to illustrate the new results.


Author(s):  
Hurang Hu ◽  
Akindeji Ojetola ◽  
Hamid Hamidzadeh

The vibration behavior of a cracked cantilever beam with a stationary roving mass and rotary inertia is investigated. The beam is modeled as an Euler-Bernoulli beam with rectangular cross section. The transverse deformation and axial deformation of the cracked beam are coupled through a stiffness matrix which is determined based on fracture mechanics principles. The analytical solutions are obtained for the natural frequencies and mode shapes of a cracked cantilever beam with a roving mass and rotary inertia. The effects of the location and depth of the crack, the location and the weight of the roving mass and rotary inertia on the natural frequencies and mode shapes of the beam are investigated. The numerical results show that the coupling between the transverse and axial vibrations for moderate values of crack depth and/or roving mass and rotary inertia is weak. Increasing the crack depth and the mass and rotary inertia will increase the coupling effect. Detection of the crack location using natural frequencies and mode shapes as parameters is also discussed.


Author(s):  
T. N. Shiau ◽  
E. K. Lee ◽  
Y. C. Chen ◽  
T. H. Young

The paper presents the dynamic behaviors of a geared rotor-bearing system under the effects of the residual shaft bow, the gear eccentricity and excitation of gear’s transmission error. The coupling effect of lateral and torsional motions is considered in the dynamic analysis of the geared rotor-bearing system. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The dynamic characteristics including system natural frequencies, mode shapes and steady-state response are investigated. The results show that the magnitude of the residual shaft bow, the phase angle between gear eccentricity and residual shaft bow will significantly affect system natural frequencies and steady-state response. When the spin speed closes to the second critical speed, the system steady state response will be dramatically increased by the residual shaft bow for the in-phase case. Moreover the zero response can be obtained when the system is set on special conditions.


Author(s):  
Tyler Kellar ◽  
Pezhman Hassanpour

This paper addresses the dynamic characteristics of a beam with a particular elastic boundary condition. In this elastic boundary condition, the lateral and angular displacements of the beam are coupled through the elastic constraints. The dynamic characteristic, namely natural frequencies and mode shapes of vibrations are frequently encountered in the design and modeling of resonant micro-structures. The governing equations of motion of the beam is derived using Euler-Bernoulli beam theory considering the elastic coupling between the transverse and rotational displacements of the beam’s end. The characteristic equation for the natural frequencies and mode shapes of vibration is derived by applying the method of separation of variables to the governing partial differential equation of motion. The natural frequencies and mode shapes of the system are derived for various combinations of compliance values of the elastic support and are compared with those of several special cases, namely clamped-free, clamped-guided, clamped-pinned and clamped-clamped beams.


2011 ◽  
Vol 383-390 ◽  
pp. 2868-2874
Author(s):  
Zhi Hui Gao ◽  
Yu Shu Bian

Worse than common vibration, resonance is a form of severe vibration. It is very important and useful to know what factors and conditions can result in resonance of flexible manipulators, when both link flexibility and joint flexibility are taken into account. In this paper, resonance analysis of the flexible manipulator with both link flexibility and joint flexibility is studied. Based on the flexible dynamic equations, main factors resulting in resonance of the flexible manipulator are analyzed. Furthermore, several conditions exciting resonance are derived and verified with numerical simulations. These conclusions are helpful to predict resonance and useful to the structure design and motion planning for a flexible manipulator to evade resonance


Sign in / Sign up

Export Citation Format

Share Document