Effects of Orientation on Critical Heat Flux From Chip Arrays During Flow Boiling

1992 ◽  
Vol 114 (3) ◽  
pp. 290-299 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

Boiling experiments were performed with FC-72 on a series of nine in-line simulated microelectronic chips in a flow channel to ascertain the effects of channel orientation on critical heat flux (CHF). The simulated chips, measuring 10 mm × 10 mm, were flush-mounted to one wall of a 20 mm × 5 mm flow channel. The channel was rotated in increments of 45 degrees through 360 degrees such that the chips were subjected to coolant in upflow, downflow, or horizontal flow with the chips on the top or bottom walls of the channel with respect to gravity. Flow velocity was varied between 13 and 400 cm/s for subcoolings of 3, 14, 25, and 36°C and an inlet pressure of 1.36 bar. While changes in angle of orientation produced insignificant variations in the single-phase heat transfer coefficient, these changes had considerable effects on the boiling pattern in the flow channel and on CHF for velocities below 200 cm/s,’ with some chips reaching CHF at fluxes as low as 18 percent of those corresponding to vertical upflow. Increased subcooling was found to slightly dampen this adverse effect of orientation. The highest CHF values were measured with near vertical upflow and/or upward-facing chips, while the lowest values were measured with near vertical downflow and/or downward-facing chips. These variations in CHF were attributed to differences in flow boiling regime and vapor layer development on the surfaces of the chips between the different orientations. The results of the present study reveal that, while some flexibility is available in the packaging of multi-chip modules in a two-phase cooling system, some orientations should always be avoided.

Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


Author(s):  
Anand P. Roday ◽  
Michael K. Jensen

The critical heat flux (CHF) condition sets an upper limit on the flow-boiling heat transfer process. With the growing demand for the use of two-phase flow in micro and nano-sized devices, there is a strong need to understand the CHF phenomenon in channels of such small dimensions. This study experimentally investigates the critical heat flux condition during flow boiling in a single stainless steel microtube of two different diameters—0.427mm, and 0.286 mm. Degassed water is the working fluid. The effects of various parameters—diameter, mass flux (350–1500 kg/m2s), inlet subcooling (2°C–50°C), and length-to-diameter ratio (75–200) on the CHF condition are studied for the exit condition being nearly atmospheric pressure. The CHF increases with an increase in mass flux. The effect of the inlet subcooling on the CHF condition is more complex. With a decreasing inlet subcooling, the CHF decreases until saturated liquid is reached; thereafter, the CHF increases with quality.


2019 ◽  
Vol 163 ◽  
pp. 114338 ◽  
Author(s):  
Fengze Hou ◽  
Wenbo Wang ◽  
Hengyun Zhang ◽  
Cheng Chen ◽  
Chuan Chen ◽  
...  

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
S. R. Darr ◽  
J. W. Hartwig ◽  
J. Dong ◽  
H. Wang ◽  
A. K. Majumdar ◽  
...  

Recently, two-phase cryogenic flow boiling data in liquid nitrogen (LN2) and liquid hydrogen (LH2) were compared to the most popular two-phase correlations, as well as correlations used in two of the most widely used commercially available thermal/fluid design codes in Hartwig et al. (2016, “Assessment of Existing Two Phase Heat Transfer Coefficient and Critical Heat Flux on Cryogenic Flow Boiling Quenching Experiments,” Int. J. Heat Mass Transfer, 93, pp. 441–463). Results uncovered that the correlations performed poorly, with predictions significantly higher than the data. Disparity is primarily due to the fact that most two-phase correlations are based on room temperature fluids, and for the heating configuration, not the quenching configuration. The penalty for such poor predictive tools is higher margin, safety factor, and cost. Before control algorithms for cryogenic transfer systems can be implemented, it is first required to develop a set of low-error, fundamental two-phase heat transfer correlations that match available cryogenic data. This paper presents the background for developing a new set of quenching/chilldown correlations for cryogenic pipe flow on thin, shorter lines, including the results of an exhaustive literature review of 61 sources. New correlations are presented which are based on the consolidated database of 79,915 quenching points for a 1.27 cm diameter line, covering a wide range of inlet subcooling, mass flux, pressure, equilibrium quality, flow direction, and even gravity level. Functional forms are presented for LN2 and LH2 chilldown correlations, including film, transition, and nucleate boiling, critical heat flux, and the Leidenfrost point.


1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.


2008 ◽  
Vol 51 (21-22) ◽  
pp. 5426-5442 ◽  
Author(s):  
Bruno Agostini ◽  
Rémi Revellin ◽  
John Richard Thome ◽  
Matteo Fabbri ◽  
Bruno Michel ◽  
...  

Author(s):  
Alex Tulchinsky ◽  
Deborah V. Pence ◽  
James A. Liburdy

In the present study, spray cooling curves are presented for two micro-structured surfaces and are compared to smooth surface results. The micro-structured surfaces consisted of bio-inspired fractal-like geometries, denoted as grooves or fins, extending in a radial direction from the center to the periphery of a 37.8 mm circular disc. Depending on the location on the surface, dimensions of groove widths and heights varied from 100 to 500 μm, and 30 to 60 μm, respectively. Fin width and height dimensions remained constant over the surface at 127 and 60 μm, respectively. Results are presented as heat flux versus the surface-to-exit spray temperature difference at each of five volume flux conditions ranging from 0.54 to 2.04 × 10−3 m3/m2-s. Convection heat transfer coefficients are also presented for each case as a function of heat flux. Results indicate that at low and high volume fluxes, an improvement in heat transfer occurs in the single phase regime for the fin geometry. Enhancement in the single phase regime does not occur at the intermediate volume flux condition. In the two phase regime for the fin structure significant enhancements, up to 50%, are observed. Whereas the groove structure performs similarly to the smooth surface in the single phase regime and exhibits large degradation in the two phase and critical heat flux regimes, up to 50%. Critical heat flux for the fin surface compares well to that of the flat surface, with a slightly increase at high volume flux conditions.


Author(s):  
Tie Jun Zhang ◽  
Siyu Chen ◽  
Evelyn N. Wang

Two-phase microchannel cooling promises high heat flux removal for high-performance electronics and photonics. However, the heat transfer performance of flow boiling microchannels is limited by the critical heat flux (CHF) conditions. For variable heat inputs and variable fluid flows, it is essential to predict CHFs accurately for effective and efficient two-phase microchannel cooling. To characterize the CHF and pressure drop in flow boiling microchannels, a separated-flow model is proposed in this paper based on fundamental two-phase flow mass, energy, momentum conservation and wall energy conservation laws. With this theoretical framework, the relationship among liquid/vapor interfacial instability, two-phase flow characteristics and CHF is further studied. This mechanistic model also provides insight into the design and operational guidelines for advanced electronics and photonics cooling technologies.


Sign in / Sign up

Export Citation Format

Share Document