Performance of a Novel Semiclosed Gas-Turbine Refrigeration Combined Cycle

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Joseph J. Boza ◽  
William E. Lear ◽  
S. A. Sherif

A thermodynamic performance analysis was performed on a novel cooling and power cycle that combines a semiclosed gas turbine called the high-pressure regenerative turbine engine (HPRTE) with an absorption refrigeration unit. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration cycle, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration depending on ambient conditions. Two cases were considered: a small engine with a nominal power output of 100kW and a large engine with a nominal power output of 40MW. The cycle was modeled using traditional one-dimensional steady-state thermodynamics, with state-of-the-art polytropic efficiencies and pressure drops for the turbomachinery and heat exchangers, and curve fits for properties of the LiBr-water mixture and the combustion products. The small engine was shown to operate with a thermal efficiency approaching 43% while producing 50% as much 5°C refrigeration as its nominal power output (roughly 50tons) at 30°C ambient conditions. The large engine was shown to operate with a thermal efficiency approaching 62% while producing 25% as much 5°C refrigeration as its nominal power output (roughly 20,000tons) at 30°C ambient conditions. Thermal efficiency stayed relatively constant with respect to ambient temperature for both the large and small engines. It decreased by only 3–4% as the ambient temperature was increased from 10°Cto35°C in each case. The amount of external refrigeration produced by the engine sharply decreased in both engines at around 35°C, eventually reaching zero at roughly 45°C in each case for 5°C refrigeration. However, the evaporator temperature could be raised to 10°C (or higher) to produce external refrigeration in ambient temperatures as high as 50°C.

Author(s):  
Joseph J. Boza ◽  
William E. Lear ◽  
S. A. Sherif

A thermodynamic performance analysis was performed on a novel cooling and power cycle that combines a semi-closed gas turbine called the High Pressure Regenerative Turbine Engine (HPRTE) with an absorption refrigeration unit. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration cycle, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration depending on ambient conditions. Two cases were considered: a small engine with a nominal power output of 100kW, and a large engine with a nominal power output of 40 MW. The cycle was modeled using traditional one-dimensional steady-state thermodynamics, with state-of-the-art polytropic efficiencies and pressure drops for the turbo-machinery and heat exchangers, and curve-fits for properties of the LiBr-water mixture and the combustion products. The small engine was shown to operate with a thermal efficiency approaching 43% while producing 50% as much 5°C refrigeration as its nominal power output (roughly 50 tons) at 30 °C ambient conditions. The large engine was shown to operate with a thermal efficiency approaching 62% while producing 25% as much 5°C refrigeration as its nominal power output (roughly 20,000 tons) at 30 °C ambient conditions. Thermal efficiency stayed relatively constant with respect to ambient temperature for both the large and small engine. It decreased by only 3–4% as the ambient temperature was increased from 10 to 35 °C in each case. The amount of external refrigeration produced by the engine decreased sharply in both engines at around 35 °C, eventually reaching zero at roughly 45°C in each case for 5°C refrigeration. However, the evaporator temperature could be raised to 10°C (or higher) to produce external refrigeration in ambient temperatures as high as 50°C.


Author(s):  
J. R. Khan ◽  
W. E. Lear ◽  
S. A. Sherif

A thermodynamic performance analysis is performed on a novel cooling and power cycle that combines a semi-closed cycle gas turbine called the High Pressure Regenerative Turbine Engine (HPRTE) with an absorption refrigeration unit. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration, in an amount which depends on ambient conditions. The cycle is modeled using traditional one-dimensional steady-state thermodynamics, with state-of-the-art polytropic efficiencies and pressure drops for the turbo-machinery and heat exchangers, and accurate y correlations for the properties of the LiBr-water mixture and the combustion products. Water produced as a product of combustion is intentionally condensed in the evaporator of the vapor absorption refrigeration system. The mixture properties of air account for the water removal rate. The vapor absorption refrigeration unit is designed to provide sufficient cooling for water extraction. The cycle is shown to operate with a thermal efficiency approaching 58% for a turbine inlet temperature of 1400 °C in addition to producing about 0.45 liters of water per liter of fuel consumed. Also at the above operating condition the ratio of the refrigeration effect to the net work output from the system is equal to 0.8. The ratio of mass of water extracted to the mass of fresh air inlet into the combined cycle is obtained for different values of cycle parameters, namely turbine inlet temperature, recuperator inlet temperature and the low pressure compressor ratio. The maximum value of this ratio is found to be around 0.11. It is found that it is a strong function of the recirculation ratio and it decreased by 22% as the recirculation ratio is decreased by 70%. The thermodynamic impacts of water extraction on the system performance are also discussed. Based on these results, and prior results, which showed that the HPRTE is very compact, it appears that this cycle would be ideally suited for distributed power and vehicle applications, especially ones with associated air conditioning loads.


Author(s):  
M. J. Kermani ◽  
B. Rad Nasab ◽  
M. Saffar-Avval

The effect of ambient conditions, ambient temperature and site location of the power plant (the altitude or ambient pressure), on the performance of a typical supplementary fired (SF) gas-steam combined cycle (CC) is studied, and its performances are compared with that of the unfired case. The CC used in the present study is comprised of two V94.2 gas turbine units, two HR-steam generators and a single steam cycle. For the cases studied, it is observed that SF can increase the total net power of the CC by 5% and the efficiency for the fired-cycle is observed to be about 1% less than that of unfired-cycle case. The variations of the total net power with ambient temperature for both supplementary fired and unfired cases (slope w.r.t. the ambient temperature) are almost identical.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Thamir K. Ibrahim ◽  
M. M. Rahman

The performance enhancements and modeling of the gas turbine (GT), together with the combined cycle gas turbine (CCGT) power plant, are described in this study. The thermal analysis has proposed intercooler–reheated-GT (IHGT) configuration of the CCGT system, as well as the development of a simulation code and integrated model for exploiting the CCGT power plants performance, using the matlab code. The validation of a heavy-duty CCGT power plants performance is done through real power plants, namely, MARAFIQ CCGT plants in Saudi Arabia with satisfactory results. The results from this simulation show that the higher thermal efficiency of 56% MW, while high power output of 1640 MW, occurred in IHGT combined cycle plants (IHGTCC), having an optimal turbine inlet temperature about 1900 K. Furthermore, the CCGT system proposed in the study has improved power output by 94%. The results of optimization show that the IHGTCC has optimum power of 1860 MW and thermal efficiency of 59%. Therefore, the ambient temperatures and operation conditions of the CCGT strongly affect their performance. The optimum level of power and efficiency is seen at high turbine inlet temperatures and isentropic turbine efficiency. Thus, it can be understood that the models developed in this study are useful tools for estimating the CCGT power plant's performance.


Author(s):  
Hussain Al-Madani ◽  
Teoman Ayhan ◽  
Omar Al-Abbasi

The present study deals with the thermodynamically modelled two-shaft gas turbine system consisting of a cooling unit at the compressor inlet. The system is used to investigate the generated power, thermal efficiency and second law efficiency. The parametric study using this model shows effect of ambient conditions, compressor inlet temperature, and pressure ratios on power output, thermal efficiency and second law efficiency. Theoretical results using the proposed model show that when the compressor inlet temperature is decreased by some kind of cooling systems, the net power output and thermal efficiency increases up to 30% and 23%, respectively. Also, the second law efficiency of the proposed system increases in compression to the specified reference state. It shows that the proposed model is thermodynamically viable. A comparison of the performance test results of the model and the experimental results are in good agreement. The results provide valuable information regarding the gas turbine system and will be useful for designers.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Author(s):  
Jobaidur Rahman Khan ◽  
Ting Wang

During the summer, power output and the efficiency of gas turbines deteriorate significantly. Gas turbine inlet air fog cooling is considered a simple and cost-effective method to increase power output as well as, sometimes, thermal efficiency. During fog cooling, water is atomized to micro-scaled droplets and introduced into the inlet airflow. In addition to cooling the inlet air, overspray can further enhance output power by intercooling the compressor. With continued increase of volatility of natural gas prices and concerns regarding national energy security, alternative fuels such as low calorific value (LCV) synthetic gases (syngas) derived from gasification of coal, petroleum coke, or biomass are considered as important common fuels in the future. The effect of fogging/overspray on LCV fuel fired gas turbine systems is not clear. This paper specifically investigates this issue by developing a wet compression thermodynamic model that considers additional water and LCV fuel mass flows, non-stoichiometric combustion, and the auxiliary fuel compressor power. An in-house computational program, FogGT, has been developed to study the theoretical gas turbine performance by fixing the pressure ratio and turbine inlet temperature (TIT) assuming the gas turbine has been designed or modified to take in the additional mass flow rates from overspray and LCV fuels. Two LCV fuels of approximately 8% and 15% of the NG heating values, are considered respectively. Parametric studies have been performed to consider different ambient conditions and various overspray ratios with fuels of different low heating values. The results show, when LCV fuels are burned, the fuel compressor consumes about 10–18% of the turbine output power in comparison with 2% when NG is burned. LCV fueled GT is about 10–16% less efficient than NG fueled GT and produces 10–24% of net output power even though LCV fuels significantly increase fuel compressor power. When LCV fuels are burned, saturated fogging can achieve a net output power increases approximately 1–2%, while 2% overspray can achieve 20% net output enhancement. As the ambient temperature or relative humidity increases, the net output power decreases. Fog/overspray could either slightly increase or decrease the thermal efficiency depending on the ambient conditions.


Author(s):  
Sepehr Sanaye ◽  
Abbasali Farhad ◽  
Mohsen Ebrahimi

The ambient conditions (temperature, pressure and humidity) affect the gas turbine power output and thermal efficiency [1–8]. Increasing one Celsius degree of ambient temperature decreases the power output for about 0.5 to 0.9 percent and the thermal efficiency for about 0.25 percent. Evaporating cooling is efficient and cost effective method for gas turbine inlet cooling to improve the power output and efficiency, specially in hot and dry regions. A systematic thermo-economic evaluation of the three evaporative inlet cooling methods applied to existing 25 MW Fiat gas turbine in Ray power plant, is presented in this paper. The three inlet cooling methods considered are: evaporative inlet fogging, media type evaporative cooling and inlet cooling through air washer. The investment and maintenance costs, the income from increasing the power output, the costs of increasing fuel consumption, and power loss due to pressure drops, were estimated and the payback periods for the mentioned evaporative inlet cooling methods were obtained and compared. The suitable evaporative cooling method for various operational conditions is proposed for 25 MW Fiat gas turbines.


2021 ◽  
pp. 296-296
Author(s):  
Ting Chen ◽  
Anping Wan ◽  
Ke Li ◽  
Xingwei Xiang ◽  
Qinglong Zhou ◽  
...  

By using exhaust gas as heating source, a combined cycle power plant with inlet fuel heating is investigated experimentally. Energy analysis and exergy analysis are carried out under different power load and ambient temperature. The results reveal that the thermal efficiency of the power plant system increases as power load increases. The thermal efficiency and power output at 5?C are 54.15% and 412 MW, respectively; while when the ambient temperature is 35?C, the thermal efficiency and power output are 52.3% and 330 MW, respectively. Under the same conditions, the combustion chamber has the highest irreversibility rate, while the air compressor has the lowest. The irreversibility rate of the power plant system increases in line with power load. The second-law efficiency increases from 37.08% to 50.12% when the power load changes from 30% to 100%.


Author(s):  
Do Won Kang ◽  
Chang Min Kim ◽  
Tong Seop Kim ◽  
Jeong L. Sohn

This study aims to provide a systematic overview of the relations between IGCC performance and major design and operating parameters such as integration degree, nitrogen dilution, and ambient temperature. A unique feature of this study is that allowable maximum values of both the gas turbine power ouput and the turbine blade temperature were considered. For this purpose, a simulation tool to predict operation and performance of a syngas turbine, which was modified from a base gas turbine model, was set up using off-design models. Then, an entire integrated gasification combined cycle using the syngas turbine was modeled. The power block (i.e. the combined cycle) was modeled in detail and mass and energy interactions of the power block with a gasifier block and an air separation unit were included. Variation in syngas turbine power output according to varying nitrogen dilution was simulated and operating conditions where gas turbine power needs to be suppressed to the allowable maximum value were found out. Maximum net IGCC power output under the limitations of gyngas turbine power and blade temperature was predicted for various integration degrees in a wide ambient temperature range. The influence of steam dilution on plant performance was also investigated.


Sign in / Sign up

Export Citation Format

Share Document