Effect of Inlet Flow Distortion on Performance of Vortex Controlled Diffusers

1992 ◽  
Vol 114 (2) ◽  
pp. 191-197 ◽  
Author(s):  
R. K. Sullerey ◽  
V. Ashok ◽  
K. V. Shantharam

The present experimental investigations are concerned with diffusers employing the concept of vortex control to achieve high pressure recovery in a short length. Two types of two-dimensional diffusers have been studied, namely, vortex controlled and hybrid diffusers. Investigations have been carried out on such short diffusers with symmetrically and asymmetrically distorted inlet velocity profiles for area ratios 2.0 and 2.5 and divergence angle of 30 and 45 deg at a Reynolds number of 105. For each of the above configurations, experiments have been carried out for a range of fence subtended angles and bleed rates. The results indicate improvement in diffuser effectiveness up to a particular bleed off for both types of diffusers. It was observed that the nature of exit velocity profiles could be controlled by differential bleed.

Author(s):  
M. M. Al-Mudhafar ◽  
M. Ilyas ◽  
F. S. Bhinder

The results of an experimental study on the influence of severely distorted velocity profiles on the performance of a straight two-dimensional diffuser are reported. The data cover entry Mach numbers ranging from 0.1 to 0.6 and several inlet distortion levels. The pressure recovery progressively deteriorates as the inlet velocity is distorted.


A phenomenon of boundary-layer instability is discussed from the theoretical and experimental points of view. The china-clay evaporation technique shows streaks on the surface, denoting a vortex system generated in the region of flow upstream of transition. Experiments on a swept wing are described briefly, while experiments on the flow due to a rotating disk receive much greater attention. In the latter case, the axes of the disturbance vortices take the form of equi-angular spirals, bounded by radii of instability and of transition. A frequency analysis of the disturbances shows that there is a narrow band of disturbance components of high amplitude, some frequencies within this band corresponding to disturbances fixed relative to the surface and others corresponding to moving waves. Furthermore, the determination of velocity profiles for the rotating-disk flow is described, the agreement with the theoretical solution for laminar flow being quite satisfactory; for turbulent flow, however, the empirical theories are not very satisfactory. In order to explain the vortex phenomenon just discussed, the general equations of motion in orthogonal curvilinear co-ordinates are examined by superimposing an infinitesimal disturbance periodic in space and time on the main flow, and linearizing for small disturbances. An important result is that, within the range of certain approximations, the velocity component in the direction of propagation of the disturbance may be regarded as a two-dimensional flow for stability purposes; then the problem of stability formally resembles the well-known two dimensional problem. However, it is important to emphasize that this result—namely, that the flow curvature has little influence on stability—is applicable only to the possible modes of instability in a local region. The nature of three-dimensional flows is discussed, and the importance of co-ordinates along and normal to the stream-lines outside the boundary layer is examined. In accord with the formal two-dimensional nature of the instability, there is a whole class of velocity distributions, corresponding to different directions, which may exhibit instability. The question of stability at infinite Reynolds number is examined in detail for these profiles. As for ordinary two-dimensional flows, the wave velocity of the disturbance must lie somewhere between the maximum and minimum of the velocity profile considered. The points where the wave velocity equals the fluid velocity are called critical points, of which most of the profiles considered have two. Then Tollmien’s criterion that velocity profiles with a point of inflexion are unstable at infinite Reynolds number is extended to the case of profiles with two critical points. One particular profile—namely, that for which the point of inflexion lies at the point of zero velocity—may generate neutral disturbances of zero phase velocity, corresponding to the disturbances visualized by the china-clay technique. A variational method for the solution of certain of the eigenvalue problems associated with stability at infinite Reynolds number is derived, found by comparison with an exact solution to be very accurate, and applied to the rotating disk. The fixed vortices predicted by the theory have as their axes equi-angular spirals of angle 103°, in good agreement with experiment, but the agreement between theoretical and experimental wave number is not good, the discrepancy being attributed to viscosity. Finally, the correlation between the experimentally observed and theoretically possible disturbances is discussed and certain conclusions drawn therefrom. The streamlines of the disturbed boundary layer show the existence of a double row of vortices, one row of which produces the streaks in the china clay. Application of the theory to other physical phenomena is described.


1971 ◽  
Vol 93 (4) ◽  
pp. 465-469 ◽  
Author(s):  
P. Gould

This paper presents the results of an analysis of fluid flow in high pressure hydrostatic bearings and seals which can be modeled as infinitely long, closely spaced, rigid parallel plates. The flow is laminar and at low Reynolds number. The fluid is Newtonian with a viscosity which is an exponential function of temperature and pressure. The effect of the temperature variation across the fluid film is found to be extremely significant, and limits the application of the integrated adiabatic energy equation to a narrow range of the parameters.


1980 ◽  
Vol 102 (3) ◽  
pp. 283-289 ◽  
Author(s):  
K. F. Kaiser ◽  
A. T. McDonald

The combustor diffuser in a gas turbine engine must accept a high-speed, unsteady, distorted flow from the engine compressor. It must deliver flow to the combustor with minimum loss in total pressure and minimum velocity profile distortion. Both pressure recovery and outlet flow distortion characteristics of diffusers must be considered in design tradeoffs. The purpose of this investigation was to study the effects of nonuniform inlet velocity profiles on the inception of stall in two-dimensional plane-wall diffusers. Centrally-located “wake-type” inlet velocity profiles were chosen to simulate the flow conditions at the inlet of a combustor diffuser. The inlet distortion was characterized by dimensionless wake strength and wake width parameters. The experiments were performed on an open surface water table to make flow visualization possible. A centerline or pocket-type stall, such as previously reported in swirling flows, was observed for sufficiently severe inlet profile distortion. A new definition of first appreciable stall, based on a fraction of the exit area stalled, was introduced to characterize stalls which did not occur on a solid surface.


1969 ◽  
Vol 91 (3) ◽  
pp. 462-474 ◽  
Author(s):  
S. Wolf ◽  
J. P. Johnston

An analytical and experimental study on the effects of large distortions of inlet velocity profiles on flow regimes and performance in diffusers is reported. Experiments are restricted to flow in straight, two-dimensional diffusers with turbulent boundary layers. Systematic data are obtained for two general types of inlet flows: (1) simple, uniform shear flows in the core, and (2) severely nonuniform shear flows of the wake, jet, and step-shear type. For uniform shear flows a first order prediction method based on inviscid rotational flow and the boundary layer blockage concept is developed and verified for diffusers operating in the unstalled flow regime. For nonuniform shear flows the inviscid rotational model is shown to predict performance trends better than the irrotational model; however, the inviscid rotational model is inadequate as a precise prediction method because no account is taken of mixing in the core region. Geometry and performance correlations for peak pressure recovery (at constant N/W1) are also established.


2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 342
Author(s):  
Holger Lieberwirth ◽  
Lisa Kühnel

Confined bed comminution in high-pressure grinding rollers (HPGRs) and vertical roller mills (VRMs) was previously used preferably for grinding comparably homogeneous materials such as coal or clinker. Meanwhile, it started to complement or even replace tumbling mills in ore beneficiation with ore and gangue particles of rather different breakage behaviors. The selectivity in the comminution of a mixture of particles with different strengths but similar particle size distribution (PSD) of the constituents in a particle bed was investigated earlier. The strength of a material is, however, also a function of particle size. Finer particles tend to be more competent than coarser ones of the same material. In industrial ore processing using confined bed comminution, this effect cannot be neglected but even be exploited to increase efficiency. This paper presents research results on this topic based on experimental investigations with model materials and with natural particles, which were stressed in a piston–die press. It appeared that the comminution result substantially depends on the material characteristics, the composition of the mixture and the PSD of the constituents. Conclusions will be drawn for the future applications of selective comminution in mineral processing.


Sign in / Sign up

Export Citation Format

Share Document