A Flux-Split Solution Procedure for Unsteady Inlet Flow Calculations

1992 ◽  
Vol 114 (2) ◽  
pp. 198-204 ◽  
Author(s):  
H. S. Pordal ◽  
P. K. Khosla ◽  
S. G. Rubin

The solution of the reduced Navier Stokes (RNS) equations is considered using a flux-split procedure. Unsteady flow in a two dimensional engine inlet is computed. The problems of unstart and restart are investigated. A sparse matrix direct solver combined with a domain decomposition strategy is used to compute the unsteady flow field. Strong shock-boundary layer interaction, time varying shocks, and time varying recirculation regions are efficiently captured.

Author(s):  
Quentin Rendu ◽  
Yannick Rozenberg ◽  
Stéphane Aubert ◽  
Pascal Ferrand

In order to predict oscillating loads on a structure, time-linearized methods are fast enough to be routinely used in design and optimization steps of a turbomachine stage. In this work, frequency-domain time-linearized Navier-Stokes computations are proposed to predict the unsteady separated flow generated by an oscillating bump in a transonic nozzle. We also investigate the interaction of backward traveling pressure waves and moving surface on the unsteady behavior of a strong shock-wave with separated boundary-layer. This case is representative of transonic stall flutter of a compressor blade submitted to downstream stator potential effects. The influence of frequency is first investigated on a generic oscillating bump to identify the most unstable configuration. Introducing back pressure fluctuations, we then show that the aeroelastic stability of the system depends on the phase-shift between the fluctuations and the bump motion. Finally, we propose to actively control the instability by generating backward traveling pressure waves at prescribed amplitude, frequency and phase.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
G. A. Gerolymos ◽  
E. Blin ◽  
H. Quiniou

The prediction of unsteady flow in vibrating transonic cascades is essential in assessing the aeroelastic stability of fans and compressors. In the present work an existing computational code, based on the numerical integration of the unsteady Euler equations, in blade-to-blade surface formulation, is validated by comparison with available theoretical and experimental results. Comparison with the flat plate theory of Verdon is, globally, satisfactory. Nevertheless, the computational results do not exhibit any particular behaviour at acoustic resonance. The use of a 1-D nonreflecting boundary condition does not significantly alter the results. Comparison of the computational method with experimental data from started and unstarted supersonic flows, with strong shock waves, reveals that, notwithstanding the globally satisfactory performance of the method, viscous effects are prominent at the shock wave/boundary layer interaction regions, where boundary layer separation introduces a pressure harmonic phase shift, which is not presicted by inviscid methods.


Author(s):  
Morteza Rahmanpour ◽  
Reza Ebrahimi ◽  
Mehrzad Shams

A numerical method for calculation of strong radiation for two-dimensional reactive air flow field is developed. The governing equations are taken to be two dimensional, compressible Reynolds-average Navier-Stokes and species transport equations. Also, radiation heat flux in energy equation is evaluated using a model of discrete ordinate method. The model used S4 approximation to reduce the governing system of integro-differential equations to coupled set of partial differential equations. A multiband model is used to construct absorption coefficients. Tangent slab approximation is assumed to determine the characteristic parameters needed in the Discrete Ordinates Method. The turbulent diffusion and heat fluxes are modeled by Baldwin and Lomax method. The flow solution is obtained with a fully implicit time marching method. A thermochemical nonequilibrium formulation appropriate to hypersonic transitional flow of air is presented. The method is compared with existing experimental results and good agreement is observed.


2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


Sign in / Sign up

Export Citation Format

Share Document