A Note on Laminar Flow in Uniformly Porous Tubes

1993 ◽  
Vol 115 (3) ◽  
pp. 493-496 ◽  
Author(s):  
K. Schnitzlein

A numerical analysis of the steady, laminar, incompressible flow in a constant diameter tube with uniform mass suction at the wall is made to study the development of the flow for the entire range of wall Reynolds numbers. It is shown that for small suction rates the state of flow can reach the similarity condition at least at distinct positions at the tube axis. For higher suction rates similarity profiles are found to occur only if the flow exhibits an asymmetric behavior with respect to the point of complete mass extraction.

1981 ◽  
Vol 103 (4) ◽  
pp. 785-790 ◽  
Author(s):  
J. H. Masliyah ◽  
K. Nandakumar

The Navier-Stokes equation in a rotating frame of reference is solved numerically to obtain the flow field for a steady, fully developed laminar flow of a Newtonian fluid in a twisted tube having a square cross-section. The macroscopic force and energy balance equations and the viscous dissipation term are presented in terms of variables in a rotating reference frame. The computed values of friction factor are presented for dimensionless twist ratios, (i.e., length of tube over a rotation of π radians normalized with respect to half the width of tube) of 20, 10, 5 and 2.5 and for Reynolds numbers up to 2000. The qualitative nature of the axial velocity profile was observed to be unaffected by the swirling motion. The secondary motion was found to be most important near the wall.


1995 ◽  
Vol 117 (1) ◽  
pp. 170-175 ◽  
Author(s):  
J. K. Comer ◽  
C. Kleinstreuer

Steady laminar flow past solitary spheroids and nonspherical droplets has been numerically analyzed. Specifically, interfacial transport properties such as surface pressures, interfacial velocities, shear stresses and separation angles as well as the resulting drag coefficients are evaluated for specified aspect ratios (0.2 ≤ E = b/a ≤ 1.0) and intermediate gas stream Reynolds numbers (40 ≤ Re ≤ 120). For one case, it was determined that the use of the traditional spherical-droplet assumption would result in a 30 percent underprediction of the total drag coefficient.


1993 ◽  
Vol 5 (7) ◽  
pp. 1703-1717 ◽  
Author(s):  
John R. Richards ◽  
Antony N. Beris ◽  
Abraham M. Lenhoff

Author(s):  
Kamyar Mansour

We consider fully developed steady laminar flow through a uniformly heated horizontal pipe is simplified by assuming infinite Prandtl number. The solution is expanded in powers of a single combined similarity parameter which is the product of the Prandtl, Rayleigh, and Reynolds numbers and the series extended by means of symbolic calculation up to 16 terms. Analysis of these expansions allows the exact computation for arbitrarily accuracy up to 50000 figures. Although the range of exactness is almost the same order of the radius of convergence but Pade approximation lead our result to be good even for much higher value of the similarity parameter.


1985 ◽  
Vol 150 ◽  
pp. 1-21 ◽  
Author(s):  
Kamyar Mansour

We consider fully developed steady laminar flow through a pipe that is rotating slowly about a line perpendicular to its own axis. The solution is expanded for low Reynolds numbers in powers of a single combined similarity parameter and the series extended to 34 terms by computer. Analysis shows that convergence is limited by a square-root singularity on the negative real axis of the similarity parameter. An Euler transformation and extraction of the leading, secondary and tertiary singularities at infinity render the series accurate for all values of the similarity parameter. The major conclusion of this investigation is that the friction ratio in a slowly rotating pipe grows asymptotically as the ⅛ power of the similarity parameter and not as the ¼ power as previously deduced from boundary-layer analysis. This discrepancy between the present computer-extended method and boundary-layer analysis has also occurred in the similar problem of flow through a loosely coiled pipe (Van Dyke 1978).


2019 ◽  
Vol 30 (7) ◽  
pp. 3827-3842
Author(s):  
Samer Ali ◽  
Zein Alabidin Shami ◽  
Ali Badran ◽  
Charbel Habchi

Purpose In this paper, self-sustained second mode oscillations of flexible vortex generator (FVG) are produced to enhance the heat transfer in two-dimensional laminar flow regime. The purpose of this study is to determine the critical Reynolds number at which FVG becomes more efficient than rigid vortex generators (RVGs). Design/methodology/approach Ten cases were studied with different Reynolds numbers varying from 200 to 2,000. The Nusselt number and friction coefficients of the FVG cases are compared to those of RVG and empty channel at the same Reynolds numbers. Findings For Reynolds numbers higher than 800, the FVG oscillates in the second mode causing a significant increase in the velocity gradients generating unsteady coherent flow structures. The highest performance was obtained at the maximum Reynolds number for which the global Nusselt number is improved by 35.3 and 41.4 per cent with respect to empty channel and rigid configuration, respectively. Moreover, the thermal enhancement factor corresponding to FVG is 72 per cent higher than that of RVG. Practical implications The results obtained here can help in the design of novel multifunctional heat exchangers/reactors by using flexible tabs and inserts instead of rigid ones. Originality/value The originality of this paper is the use of second mode oscillations of FVG to enhance heat transfer in laminar flow regime.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


1982 ◽  
Vol 104 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Manlio Bertela` ◽  
Fabio Gori

Unsteady and steady flow in a cylindrical chamber with a rotating cover has been studied for two Reynolds numbers and three aspect ratio values. The structure of the velocity and pressure fields in the apparatus is described. Primary and secondary volumetric flow rates and torque coefficients are also calculated for all six cases solved.


Sign in / Sign up

Export Citation Format

Share Document