Internal Distribution of Radiant Absorption in a Spherical Particle

1991 ◽  
Vol 113 (2) ◽  
pp. 407-412 ◽  
Author(s):  
A. Tuntomo ◽  
C. L. Tien ◽  
S. H. Park

This paper applies electromagnetic wave theory for the study of the internal radiant absorption field of a small spherical particle, particularly to determine the optimum combination of size-to-wavelength parameter and complex refractive index for maximum local peak absorption. A map is devised to illustrate the general pattern of the internal field, which can be divided into three main regimes: uniform, front-concentrated, and back-concentrated absorption. In addition, the current study employs geometrical optics to investigate the internal field of radiant absorption. A comparison between the results from the geometrical optics approach to those from electromagnetic wave theory shows that the error involved in the geometrical optics approach increases sharply with the real part of the complex refractive index. A criterion is established to define the region of the applicability of geometrical optics.

1992 ◽  
Vol 114 (3) ◽  
pp. 644-652 ◽  
Author(s):  
Z. M. Zhang ◽  
B. I. Choi ◽  
T. A. Le ◽  
M. I. Flik ◽  
M. P. Siegal ◽  
...  

This work investigates whether thin-film optics with a constant refractive index can be applied to high-Tc superconducting thin films. The reflectance and transmittance of YBa2Cu3O7 films on LaAlO3 substrates are measured using a Fourier-transform infrared spectrometer at wavelengths from 1 to 100 μm at room temperature. The reflectance of these superconducting films at 10 K in the wavelength region from 2.5 to 25 μm is measured using a cryogenic reflectance accessory. The film thickness varies from 10 to 200 nm. By modeling the frequency-dependent complex conductivity in the normal and superconducting states and applying electromagnetic-wave theory, the complex refractive index of YBa2Cu3O7 films is obtained with a fitting technique. It is found that a thickness-independent refractive index can be applied even to a 25 nm film, and average values of the spectral refractive index for film thicknesses between 25 and 200 nm are recommended for engineering applications.


2006 ◽  
Vol 505-507 ◽  
pp. 97-102
Author(s):  
Ching Yen Ho ◽  
Mao Yu Wen

This paper investigated the absorption of a micro-particle irradiated by laser. Micro-particles usually appear within the plasma induced by a laser or powder in the process of laser cladding. These particles are assumed to be spherical and neutral (no surface charge). Laser-particle interactions involve scattering, refraction, and diffraction phenomena. Refraction and diffraction can enhance radiation absorption. The complex optical indexes of material and size parameters of micro-particles characterize the absorption of particles in these materials processing. The electromagnetic wave theory and geometrical optics approach were utilized to analyze the absorption in the particle. The errors between these two methods were discussed for different indexes of absorption and size parameters. The compatibility of geometrical optics approach for a small particle is also presented.


1979 ◽  
Vol 44 (7) ◽  
pp. 2064-2078 ◽  
Author(s):  
Blahoslav Sedláček ◽  
Břetislav Verner ◽  
Miroslav Bárta ◽  
Karel Zimmermann

Basic scattering functions were used in a novel calculation of the turbidity ratios for particles having the relative refractive index m = 1.001, 1.005 (0.005) 1.315 and the size α = 0.05 (0.05) 6.00 (0.10) 15.00 (0.50) 70.00 (1.00) 100, where α = πL/λ, L is the diameter of the spherical particle, λ = Λ/μ1 is the wavelength of light in a medium with the refractive index μ1 and Λ is the wavelength of light in vacuo. The data are tabulated for the wavelength λ = 546.1/μw = 409.357 nm, where μw is the refractive index of water. A procedure has been suggested how to extend the applicability of Tables to various refractive indices of the medium and to various turbidity ratios τa/τb obtained with the individual pairs of wavelengths λa and λb. The selection of these pairs is bound to the sequence condition λa = λ0χa and λb = λ0χb, in which b-a = δ = 1, 2, 3; a = -2, -1, 0, 1, 2, ..., b = a + δ = -1, 0, 1, 2, ...; λ0 = λa=0 = 326.675 nm; χ = 546.1 : 435.8 = 1.2531 is the quotient of the given sequence.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Optik ◽  
2019 ◽  
Vol 194 ◽  
pp. 163078
Author(s):  
Xu Meng ◽  
Chen Yun-yun ◽  
Cui Fen-ping

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2001 ◽  
Vol 32 ◽  
pp. 683-684
Author(s):  
M. EBERT ◽  
S. WEINBRUCH ◽  
A. RAUSCH ◽  
G. GORZAWSKI ◽  
H. WEX ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document