Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling

1992 ◽  
Vol 114 (1) ◽  
pp. 211-219 ◽  
Author(s):  
M. R. Pais ◽  
L. C. Chow ◽  
E. T. Mahefkey

In the spray cooling of a heated surface, variations in the surface texture influence the flow field, altering the maximum liquid film thickness, the bubble diameter, vapor entrapment, bubble departure characteristics, and the ability to transfer heat. A new method for determining and designating the surface texture is proposed, and the effects of surface roughness on evaporation/nucleation in the spray cooling flow field studied. A one-dimensional Fourier analysis is applied to determine experimentally the surface profile of a surface polished with emery paper covering a spectrum of grit sizes between 0.3 to 22 μm. Heat transfer measurements for liquid flow rates between 1 to 5 l/h and air flow rates between 0.1 to 0.4 l/s are presented. Maximum heat fluxes of 1200 W/cm2 for the 0.3 μm surface at very low superheats were obtained.

Author(s):  
Ganesh Guggilla ◽  
Arvind Pattamatta ◽  
Ramesh Narayanaswamy

Abstract Due to the advancements in computing services such as machine learning and artificial intelligence, high-performance computing systems are needed. Consequently, the increase in electron chip density results in high heat fluxes and required sufficient thermal management to maintain the servers. In recent times, the liquid cooling techniques become prominent over air cooling as it has significant advantages. Spray cooling is one such efficient cooling process which can be implemented in electronics cooling. To enhance the knowledge of the process, detailed studies of fundamental mechanisms involved in spray cooling such as single droplet and multiple droplet interactions are required. The present work focuses on the study of a train of droplets impinging over a heated surface using FC-72 liquid. The surface temperature is chosen as a parameter, and the Dynamic Leidenfrost point (DLP) for the present impact conditions is identified. Spread hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature, are studied and compared.


2021 ◽  
Author(s):  
Ganesh Guggilla ◽  
Ramesh Narayanaswamy ◽  
Peter Stephan ◽  
Arvind Pattamatta

Abstract High-performance computing systems are needed in advanced computing services such as machine learning and artificial intelligence. Consequently, the increase in electron chip density results in high heat fluxes and requires good thermal management to maintain the servers. Spray cooling using liquid offers higher heat transfer rates and is efficient when implemented in electronics cooling. Detailed studies of fundamental mechanisms involved in spray cooling, such as single droplet and multiple droplet interactions, are required to enhance the process's knowledge. The present work focuses on studying a train of two FC-72 droplets impinging over a heated surface. Experimental investigation using high-speed photography and infrared thermography is conducted. Simultaneously, numerical simulations using opensource CFD package, OpenFOAM are carried out, emphasizing the significance of contact angle hysteresis. The surface temperature is chosen as a parameter, and different boiling regimes along with Dynamic Leidenfrost point (DLP) for the present impact conditions are identified. Spreading hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature, are studied and compared.


Author(s):  
Adam G. Pautsch ◽  
Timothy A. Shedd

As electronic circuit design and packaging technology progresses, the density and power levels of electronic components is increasing at a nearly exponential rate. The higher heat loads dissipated by these devices are nearing the limits of traditional cooling techniques. One method capable of removing heat fluxes as high as 100 W/cm2 is spray cooling. This process involves the impingement of liquid droplets onto a heated surface, forming a thin two-phase film. In order to create reliable models of the heat transfer during spray cooling, the behavior of the film must be understood. This paper presents an investigation into the behavior of the thin film found in spray cooling. A study was performed to relate experimental measurements of the heat transfer coefficients to experimental measurements of film thickness as they vary spatially over a die surface. Both a single nozzle and a multi-nozzle array were investigated. Measured heat transfer coefficients ranged from 0.2 to 1.2 W/m2K and film thicknesses ranged from 90 to 300 μm.


Author(s):  
Eelco Gehring ◽  
Mario F. Trujillo

A primary mechanism of heat transfer in spray cooling is the impingement of numerous droplets onto a heated surface. This mechanism is isolated in the present and ongoing work by numerically simulating the impact of a single train of FC-72 droplets employing an implicit free surface capturing methodology. The droplet frequency and velocity ranges from 2000–4000 Hz, and 0.5–2 m/s, respectively, with a fixed drop size of 239 μm. This gives a corresponding Weber and Reynolds range of 10–170 and 330–1300, respectively. Results show that the impingement zone is largely free of phase change effects due to the efficient suppression of the local temperature field well below the saturated value. Due in part to the relatively high value of the Prandtl number and the compression of the boundary layer from the impingement flow, a cell size on the order of 1 μm is necessary to adequately capture the heat transfer dynamics. It is shown that the cooling behavior increases in relation to increasing frequency and impact velocity, but is most sensitive to velocity. In fact, for sufficiently low velocities the calculations show that the momentum imparted on the film is insufficient to maintain a near stationary liquid crown. The consequence is a noticeable penalty on the cooling behavior.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012172
Author(s):  
T G Gigola ◽  
V V Cheverda

Abstract The process of the liquid spray impact on the heated surface is studied experimentally using the IR-transparent sapphire plate method. The spatiotemporal distribution of the temperature field on the sapphire substrate surface during impacting spray is received. The obtained experimental data are an important step in a study of the local characteristics of heat transfer in the areas of the contact lines during liquid spray impact on the heated surface. Further, the local heat fluxes and heat transfer coefficients will be determined by solving the problem of thermal conductivity in the sapphire substrate.


Author(s):  
T. Netz ◽  
R. Shalem ◽  
J. Aharon ◽  
G. Ziskind ◽  
R. Letan

In the present study, incipient flow boiling of water is studied experimentally in a square-cross-section vertical channel. Water, preheated to 60–80 degrees Celsius, flows upwards. The channel has an electrically heated wall, where the heat fluxes can be as high as above one megawatt per square meter. The experiment is repeated for different water flow rates, and the maximum Reynolds number reached in the present study is 27,300. Boiling is observed and recorded using a high-speed digital video camera. The temperature field on the heated surface is measured with an infrared camera and a software is used to obtain quantitative temperature data. Thus, the recorded boiling images are analyzed in conjunction with the detailed temperature field. The dependence of incipient boiling on the flow and heat transfer parameters is established. For a flat wall, the results for various velocities and subcooling conditions agree well with the existing literature. Furthermore, three different wavy heated surfaces are explored, having the same pitch of 4mm but different amplitudes of 0.25mm, 0.5mm and 0.75mm. The effect of surface waviness on single-phase heat transfer and boiling incipience is shown. The differences in boiling incipience on various surfaces are elucidated, and the effect of wave amplitude on the results is discussed.


Sign in / Sign up

Export Citation Format

Share Document