Symbolic Closed-Form Modeling and Linearization of Multibody Systems Subject to Control

1991 ◽  
Vol 113 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Junghsen Lieh ◽  
Imtiaz-ul Haque

Symbolic closed-form equation formulation and linearization for constrained multibody systems subject to control are presented. The formulation is based on the principle of virtual work. The algorithm is recursive, automatically eliminates the constraint forces and redundant coordinates, and generates the nonlinear or linear dynamic equations in closed-form. It is derived with respect to principal body coordinates and a moving reference frame that allows one to generate the dynamic equations for multibody systems moving along curved track or road. The output equations may be either in syntactically correct FORTRAN form or in the form as derived by hand. A procedure that simplifies the trigonometric expressions, linearizes the geometric nonlinearities, and converts the linearized equations in state-space form is included. Several examples have been used to validate the procedure. Included is a simulation using a seven-DOF automobile ride model with active suspensions.

2006 ◽  
Vol 06 (02) ◽  
pp. 163-177 ◽  
Author(s):  
M. A. BRADFORD

This paper considers the nonlinear in-plane behaviour of a circular arch subjected to thermal loading only. The arch is pinned at its ends, with the pins being on roller supports attached to longitudinal elastic springs that model an elastic foundation, or the restraint provided by adjacent members in a structural assemblage. By using a nonlinear formulation of the strain-displacement relationship, the principle of virtual work is used to produce the differential equations of in-plane equilibrium, as well as the statical boundary conditions that govern the structural behaviour under thermal loading. These equations are solved to produce the equilibrium equations in closed form. The possibility of thermal buckling of the arch is addressed by considering an adjacent buckled equilibrium configuration, and the differential equilibrium equations for this buckled state are also derived from the principle of virtual work. It is shown that unless the arch is flat, in which case it replicates a straight column, thermal buckling of the arch in the plane of its curvature cannot occur, and the arch deflects transversely without bound in the elastic range as the temperature increases. The nonlinear behaviour of a flat arch (with a small included angle) is similar to that of a column with a small initial geometric imperfection under axial loading, while the nonlinearity and magnitude of the deflections decrease with an increase of the included angle at a given temperature. By using the closed form solutions for the problem, the influence of the stiffness of the elastic spring supports is considered, as is the attainment of temperature-dependent first yielding of a steel arch.


2012 ◽  
Vol 91 (105) ◽  
pp. 49-58
Author(s):  
Djordje Djukic

The major issues in the analysis of the motion of a constrained dynamic system are to determine this motion and calculate constraint forces. In the analytical mechanics, only the first of the two problems is analyzed. Here, the problem is solved simultaneously using: 1) Principle of liberation of constraints; 2) Principle of generalized virtual displacement; 3) Idea of ideal constraints; 4) Concept of generalized and ?supplementary" generalized coordinates. The Lagrange-D?Alembert principle of virtual work is generalized introducing virtual displacement as vectorial sum of the classical virtual displacement and virtual displacement in the ?supplementary" directions. From such principle of virtual work we derived Lagrange equations of the second kind and equations of dynamical equilibrium in the ?supplementary" directions. Constrained forces are calculated from the equations of dynamic equilibrium. At the same time, this principle can be used for consideration of equilibrium of system of material particles. This principle simultaneously gives the connection between applied forces at equilibrium state and the constrained forces. Finally, the principle is applied to a few particular problems.


Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Yongjie Zhao ◽  
Feng Gao

SUMMARYIn this paper, the inverse dynamics of the 6-dof out-parallel manipulator is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. The dynamical equations of motion include the rotation inertia of motor–coupler–screw and the term caused by the external force and moment exerted at the moving platform. The approach described here leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure. Numerical simulation for the inverse dynamics of a 6-dof out-parallel manipulator is illustrated. The whole actuating torques and the torques caused by gravity, velocity, acceleration, moving platform, strut, carriage, and the rotation inertia of the lead screw, motor rotor and coupler have been computed.


Author(s):  
Junghsen Lieh ◽  
Imtiaz Haque

Abstract A new formalism leading to closed-form formulation of equations for controlled elastic multibody systems is presented. The method is derived from the virtual work principle and includes the effects of a moving base and rigid body dynamics. The elastic members are treated as Euler-Bernoulli beams and the assumed-mode method is adopted. The equations of motion are expanded in a closed form with a minimum set of variables using the generalized coordinate partitioning and a Jacobian matrix expansion. The inertia matrix, nonlinear coupling vector, generalized force vector and other terms containing the velocity and acceleration effects of a moving base are formulated separately. The formalism facilitates matrix computations and is very suitable for symbolic processing. The method is very systematic and general and can be applied to a multibody system subject to control and constraint conditions. Derivation of the formalism is presented in part I of the article, and symbolic implementation and application of the formalism to various elastic mechanical systems are presented in part II.


Author(s):  
Evtim V. Zakhariev

Abstract In the present paper a unified numerical approach for dynamics modeling of multibody systems with rigid and flexible bodies is suggested. The dynamic equations are second order ordinary differential equations (without constraints) with respect to a minimal set of generalized coordinates that describe the parameters of gross relative motion of the adjacent bodies and their small elastic deformations. The numerical procedure consists of the following stages: structural decomposition of elastic links into fictitious rigid points and/or bodies connected by joints in which small force dependent relative displacements are achieved; kinematic analysis; deriving explicit form dynamic equations. The algorithm is developed in case of elastic slender beams and finite elements achieving spatial motion with three translations and three rotations of nodes. The beam elements are basic design units in many mechanical devices as space station antennae and manipulators, cranes and etc. doing three dimensional motion which large elastic deflections could not be neglected or linearised. The stiffness coefficients and inertia mass parameters of the fictitious joints and links are calculated using the numerical procedures of the finite element theory. The method is called finite elements in relative coordinates. Its equivalence with the procedures of recently developed finite segment approaches is shown, while in the treatment different results are obtained. The approach is used for solution of some nonlinear static problems and for deriving the explicit configuration space dynamic equations of spatial flexible system using the principle of virtual work and Euler-Lagrange equations.


Author(s):  
Jennifer Coopersmith

The meaning behind the mysterious Principle of Virtual Work is explained. Some worked examples in statics (equilibrium) are given, and the method of Virtual Work is compared and contrasted with the method of Newtonian Mechanics. The meaning of virtual displacements is explained very carefully. They must be ‘small’, happen simultaneously, and do not cause a force, result froma force, or take any time to occur. Counter to intuition, not all the actual displacements can be allowed as virtual displacements. Some examples worked through are: Feynman’s pivoting (cantilever) bar, a “black box,” a weighted spring, a ladder, a capacitor, a soap bubble, and Atwood’s machine. The links between mechanics and geometry are demonstrated, and it is shown how the reaction or constraint forces are always perpendicular to the virtual displacements. Lanczos’s Postulate A and its astounding universality are explained.


1994 ◽  
Vol 116 (4) ◽  
pp. 702-712 ◽  
Author(s):  
Junghsen Lieh

This paper introduces a method leading to separated-form formulation of dynamic equations of multibody systems subject to control. The algorithm is derived from the virtual work principle and includes the moving base effects. The elastic members are treated as Euler-Bernoulli beams. Equations of motion are expanded using generalized coordinate partitioning and a Jacobian matrix expansion. The formulation of each physical term is separated, i.e., the inertia matrix, nonlinear coupling vector, generalized force vector and base motion-induced terms are established individually. The formulation is implemented on a workstation using MAPLE. Nonlinear and linearized equations with control are generated in FORTRAN format. The control design adopts second-order models directly. Several examples including a spin-up cantilever beam, an elastic vehicle with active suspensions and an elastic slider-crank mechanism are given. Numerical results for nonlinear and linear spin-up beam models are provided. Simulation for the active vehicle model using second-order control theory is presented.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Sign in / Sign up

Export Citation Format

Share Document