scholarly journals Generalized Lagrange-D’Alembert principle

2012 ◽  
Vol 91 (105) ◽  
pp. 49-58
Author(s):  
Djordje Djukic

The major issues in the analysis of the motion of a constrained dynamic system are to determine this motion and calculate constraint forces. In the analytical mechanics, only the first of the two problems is analyzed. Here, the problem is solved simultaneously using: 1) Principle of liberation of constraints; 2) Principle of generalized virtual displacement; 3) Idea of ideal constraints; 4) Concept of generalized and ?supplementary" generalized coordinates. The Lagrange-D?Alembert principle of virtual work is generalized introducing virtual displacement as vectorial sum of the classical virtual displacement and virtual displacement in the ?supplementary" directions. From such principle of virtual work we derived Lagrange equations of the second kind and equations of dynamical equilibrium in the ?supplementary" directions. Constrained forces are calculated from the equations of dynamic equilibrium. At the same time, this principle can be used for consideration of equilibrium of system of material particles. This principle simultaneously gives the connection between applied forces at equilibrium state and the constrained forces. Finally, the principle is applied to a few particular problems.

Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Yongjie Zhao ◽  
Feng Gao

SUMMARYIn this paper, the inverse dynamics of the 6-dof out-parallel manipulator is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. The dynamical equations of motion include the rotation inertia of motor–coupler–screw and the term caused by the external force and moment exerted at the moving platform. The approach described here leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure. Numerical simulation for the inverse dynamics of a 6-dof out-parallel manipulator is illustrated. The whole actuating torques and the torques caused by gravity, velocity, acceleration, moving platform, strut, carriage, and the rotation inertia of the lead screw, motor rotor and coupler have been computed.


Author(s):  
B Wei ◽  
F Gao ◽  
J Chen ◽  
J He ◽  
X Zhao

Driving system parameters include motor parameters and transmission ratio of the reducer. In this study, a new three-degrees-of-freedom parallel excavating mechanism of electric shovel is analysed for the selection of its driving system which consists of three sub-driving parts. Based on the principle of virtual work in the form of generalized coordinates, the dynamic model of the excavating mechanism is established to calculate the external inertia loads and force (or torque) loads. For this parallel excavating mechanism which has three sub-drives, the external inertia loads cannot be fully divided into three independent parts with respect to these three sub-driving systems. Hence, the dynamic model of the system is employed to get loads characteristic of three sub-driving systems in the excavating process. Thus, the parameters' range of the motors can be obtained and then the best transmission ratio of every reducer can be obtained.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950083
Author(s):  
Raman Goyal ◽  
Manoranjan Majji ◽  
Robert E. Skelton

An analytical mechanics approach to derive equations of motion from vector kinematic description of rigid bar assemblies is developed. It is shown that various holonomic constraints governing multibody mechanical systems can be modeled using vector kinematics without using trigonometric/transcendental functions. The principle of virtual work is utilized to derive a map between the generalized coordinates associated with the vector approach and the angular velocity vector associated with the rigid bars. The utility of the vector approach is demonstrated by deriving the dynamics of tensegrity systems and a carpal wrist joint.


1991 ◽  
Vol 113 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Junghsen Lieh ◽  
Imtiaz-ul Haque

Symbolic closed-form equation formulation and linearization for constrained multibody systems subject to control are presented. The formulation is based on the principle of virtual work. The algorithm is recursive, automatically eliminates the constraint forces and redundant coordinates, and generates the nonlinear or linear dynamic equations in closed-form. It is derived with respect to principal body coordinates and a moving reference frame that allows one to generate the dynamic equations for multibody systems moving along curved track or road. The output equations may be either in syntactically correct FORTRAN form or in the form as derived by hand. A procedure that simplifies the trigonometric expressions, linearizes the geometric nonlinearities, and converts the linearized equations in state-space form is included. Several examples have been used to validate the procedure. Included is a simulation using a seven-DOF automobile ride model with active suspensions.


Author(s):  
Jennifer Coopersmith

The meaning behind the mysterious Principle of Virtual Work is explained. Some worked examples in statics (equilibrium) are given, and the method of Virtual Work is compared and contrasted with the method of Newtonian Mechanics. The meaning of virtual displacements is explained very carefully. They must be ‘small’, happen simultaneously, and do not cause a force, result froma force, or take any time to occur. Counter to intuition, not all the actual displacements can be allowed as virtual displacements. Some examples worked through are: Feynman’s pivoting (cantilever) bar, a “black box,” a weighted spring, a ladder, a capacitor, a soap bubble, and Atwood’s machine. The links between mechanics and geometry are demonstrated, and it is shown how the reaction or constraint forces are always perpendicular to the virtual displacements. Lanczos’s Postulate A and its astounding universality are explained.


Author(s):  
Jennifer Coopersmith

The link between mathematics and physics is explained, and how the concepts “coordinates,” “generalized coordinates,” “time,” and “space” have evolved, starting with Galileo. It is also shown that “degrees of freedom” is a slippery but crucial idea. The important developments in “space research”, from Pythagoras to Riemann, are sketched. This is followed by the motivations for finding a flat region of “space”, and for Riemann’s invariant interval. A careful explanation of the three ways of taking an infinitesimal step (actual, virtual, and imperfect) is given. The programme of the Calculus of Variations is described and how this requires a virtual variation of a whole path, a path taken between fixed end-states. This then culminates in the Euler-Lagrange Equations or the Lagrange Equations of Motion. Along the way, the ideas virtual displacement and extremum are explained.


1998 ◽  
Vol 51 (7) ◽  
pp. 415-433 ◽  
Author(s):  
S. Ostrovskaya ◽  
J. Angeles

Nonholonomic mechanical systems are revisited. This review article focuses on Lagrangian formulations leading to a system of governing equations free of constraint forces. While eliminating the constraint forces, the number of scalar Lagrange equations is reduced to a number of independent equations lower than the original system with constraint forces. In the process of constraint-force elimination and dimension-reduction, a matrix that appears to play a relevant role in the formulation of the mathematical models of mechanical systems arises naturally. We call this matrix here the holonomy matrix. It is shown that necessary and sufficient conditions for the integrability of the constraints in Pfaffian form are readily derived using the holonomy matrix. In the same vein, a class of nonholonomic systems is identified, of current engineering relevance, that is termed quasiholonomic. Examples are included to illustrate these concepts. This review article contains 40 references.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


2020 ◽  
Vol 86 (7) ◽  
pp. 45-54
Author(s):  
A. M. Lepikhin ◽  
N. A. Makhutov ◽  
Yu. I. Shokin

The probabilistic aspects of multiscale modeling of the fracture of heterogeneous structures are considered. An approach combining homogenization methods with phenomenological and numerical models of fracture mechanics is proposed to solve the problems of assessing the probabilities of destruction of structurally heterogeneous materials. A model of a generalized heterogeneous structure consisting of heterogeneous materials and regions of different scales containing cracks and crack-like defects is formulated. Linking of scales is carried out using kinematic conditions and multiscale principle of virtual forces. The probability of destruction is formulated as the conditional probability of successive nested fracture events of different scales. Cracks and crack-like defects are considered the main sources of fracture. The distribution of defects is represented in the form of Poisson ensembles. Critical stresses at the tops of cracks are described by the Weibull model. Analytical expressions for the fracture probabilities of multiscale heterogeneous structures with multilevel limit states are obtained. An approach based on a modified Monte Carlo method of statistical modeling is proposed to assess the fracture probabilities taking into account the real morphology of heterogeneous structures. A feature of the proposed method is the use of a three-level fracture scheme with numerical solution of the problems at the micro, meso and macro scales. The main variables are generalized forces of the crack propagation and crack growth resistance. Crack sizes are considered generalized coordinates. To reduce the dimensionality, the problem of fracture mechanics is reformulated into the problem of stability of a heterogeneous structure under load with variations of generalized coordinates and analysis of the virtual work of generalized forces. Expressions for estimating the fracture probabilities using a modified Monte Carlo method for multiscale heterogeneous structures are obtained. The prospects of using the developed approaches to assess the fracture probabilities and address the problems of risk analysis of heterogeneous structures are shown.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Sign in / Sign up

Export Citation Format

Share Document