Approximated Grashof-Type Movability Conditions for RSSR Mechanisms With Force Transmission Limitations

1992 ◽  
Vol 114 (1) ◽  
pp. 74-81 ◽  
Author(s):  
J. Rastegar ◽  
Q. Tu

Closed-form Grashof-type movability conditions are derived for closed-loop RSSR mechanisms using a geometrical approximation technique. The conditions that ensure the presence of crank-rocker and drag-link type mechanisms are derived with and without force transmission limitations. The force transmission limitations may be specified as a function of the output link angle. The accuracy of the approximated conditions is analyzed. As an example, the conditions are used to synthesize a function generating mechanism with fully rotatable crank and with various force transmission requirements. The developed technique is general, and can be applied to other similar spatial mechanisms. The application of this approach to geometrical synthesis of open-loop chain manipulators is discussed.

1990 ◽  
Vol 112 (4) ◽  
pp. 466-471
Author(s):  
J. Rastegar

The Galloway mechanism is a plane four-bar, drag-link-type linkage with one pair of equal-length shorter links, and one pair of equal-length longer links, forming a rhomboid geometry. The short links constitute the frame and the input links. In a Galloway mechanism, two full rotations of the input link result in a single rotation of the output link. In this paper, the Galloway mechanism is analyzed and the rules governing its motion are found. The conditions necessary for the existence of a Galloway-type spatial mechanism are then determined. As an example, the necessary relationships between the geometric parameters of a spatial RRRSR mechanism are derived. A numerical example is included.


Author(s):  
J. Rastegar

Abstract Derivation of Grashof-type conditions for spatial mechanisms that may include transmission angle limitations are discussed. It is shown that in general, different conditions need to be derived for each one of the existing configurations of the mechanism. In the absence of any transmission angle control, the conditions would be identical for pairs of configurations. As an example, for RRRSR mechanisms, Grashof-type conditions that ensure crank rotatability, the existence of a drag link type of mechanism, single or multiple changeover points, the possibility of full rotation at intermediate revolute joints, etc., are determined. A general discussion of the problems involved in such derivations, the use of approximation techniques to overcome some of the problems, and several other related subjects are presented.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5342
Author(s):  
Alessandro Brusa ◽  
Nicolò Cavina ◽  
Nahuel Rojo ◽  
Jacopo Mecagni ◽  
Enrico Corti ◽  
...  

This work focuses on the implementation of innovative adaptive strategies and a closed-loop chain in a piston-damage-based combustion controller. In the previous paper (Part 1), implemented models and the open loop algorithm are described and validated by reproducing some vehicle maneuvers at the engine test cell. Such controller is further improved by implementing self-learning algorithms based on the analytical formulations of knock and the combustion model, to update the fuel Research Octane Number (RON) and the relationship between the combustion phase and the spark timing in real-time. These strategies are based on the availability of an on-board indicating system for the estimation of both the knock intensity and the combustion phase index. The equations used to develop the adaptive strategies are described in detail. A closed-loop chain is then added, and the complete controller is finally implemented in a Rapid Control Prototyping (RCP) device. The controller is validated with specific tests defined to verify the robustness and the accuracy of the adaptive strategies. Results of the online validation process are presented in the last part of the paper and the accuracy of the complete controller is finally demonstrated. Indeed, error between the cyclic and the target combustion phase index is within the range ±0.5 Crank Angle degrees (°CA), while the error between the measured and the calculated maximum in-cylinder pressure is included in the range ±5 bar, even when fuel RON or spark advance map is changing.


1975 ◽  
Vol 97 (2) ◽  
pp. 739-747 ◽  
Author(s):  
Dilip Kohli ◽  
A. H. Soni

A new, unified method is proposed and demonstrated to conduct kinematic analysis of spatial mechanisms involving revolute, cylindrical, prismatic, helical and spherical pairs. The paper derives the equations for the successive screw displacements, and the equations for pair constraints. Using these equations, closed-form relationships for displacement, velocity and acceleration of single or multi-loop spatial mechanisms are obtained by (1) breaking the mechanism at a critical joint (2) unfolding the mechanism along a straight line (3) providing successive screw displacement at each joint and (4) reassembling the mechanism to form a closed loop. The application of this newly developed approach is demonstrated by considering an example of a two-loop spatial mechanism with revolute, cylindrical and spherical pairs.


1989 ◽  
Vol 111 (4) ◽  
pp. 519-523 ◽  
Author(s):  
J. Rastegar

Derivation of Grashof-type movability conditions for spatial mechanisms that may include transmission angle limitations is discussed. It is shown that in general, different conditions must be derived for each configuration (branch) of a mechanism. In the absence of transmission angle limitations, the conditions become identical for pairs of configurations. As an example, Grashof-type conditions that ensure crank rotatability, existence of drag link type of mechanisms, the presence of single or multiple changeover points, and the possibility of full rotation at intermediate revolute joints are derived for a spatial RRRSR mechanism. The problems involved in such derivations, the use of approximation techniques, and a number of related subjects are discussed.


2020 ◽  
Vol 26 ◽  
pp. 41
Author(s):  
Tianxiao Wang

This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, these two systems are in general different from each other due to the conditional mean-field terms in the MF-SDE. Eventually, the comparisons with pre-committed optimal strategies, open-loop equilibrium strategies are given in details.


2020 ◽  
pp. 99-107
Author(s):  
Erdal Sehirli

This paper presents the comparison of LED driver topologies that include SEPIC, CUK and FLYBACK DC-DC converters. Both topologies are designed for 8W power and operated in discontinuous conduction mode (DCM) with 88 kHz switching frequency. Furthermore, inductors of SEPIC and CUK converters are wounded as coupled. Applications are realized by using SG3524 integrated circuit for open loop and PIC16F877 microcontroller for closed loop. Besides, ACS712 current sensor used to limit maximum LED current for closed loop applications. Finally, SEPIC, CUK and FLYBACK DC-DC LED drivers are compared with respect to LED current, LED voltage, input voltage and current. Also, advantages and disadvantages of all topologies are concluded.


2021 ◽  
Vol 13 (15) ◽  
pp. 2868
Author(s):  
Yonglin Tian ◽  
Xiao Wang ◽  
Yu Shen ◽  
Zhongzheng Guo ◽  
Zilei Wang ◽  
...  

Three-dimensional information perception from point clouds is of vital importance for improving the ability of machines to understand the world, especially for autonomous driving and unmanned aerial vehicles. Data annotation for point clouds is one of the most challenging and costly tasks. In this paper, we propose a closed-loop and virtual–real interactive point cloud generation and model-upgrading framework called Parallel Point Clouds (PPCs). To our best knowledge, this is the first time that the training model has been changed from an open-loop to a closed-loop mechanism. The feedback from the evaluation results is used to update the training dataset, benefiting from the flexibility of artificial scenes. Under the framework, a point-based LiDAR simulation model is proposed, which greatly simplifies the scanning operation. Besides, a group-based placing method is put forward to integrate hybrid point clouds, via locating candidate positions for virtual objects in real scenes. Taking advantage of the CAD models and mobile LiDAR devices, two hybrid point cloud datasets, i.e., ShapeKITTI and MobilePointClouds, are built for 3D detection tasks. With almost zero labor cost on data annotation for newly added objects, the models (PointPillars) trained with ShapeKITTI and MobilePointClouds achieved 78.6% and 60.0% of the average precision of the model trained with real data on 3D detection, respectively.


Sign in / Sign up

Export Citation Format

Share Document