Response of Dolos Concrete Armor Units to Impact Loads

1991 ◽  
Vol 113 (4) ◽  
pp. 286-291 ◽  
Author(s):  
J. W. Tedesco ◽  
P. B. McGill ◽  
W. G. McDougal

A finite element analysis is conducted to determine the critical impact velocities for concrete dolos. The model formulation includes deformations at the contact surface and nonlinear material properties. Two dolos orientations are considered: vertical fluke seaward and horizontal fluke seaward. In both cases, the larger units fail at lower angular impact velocities. It is also shown that doubling the concrete strength increases the impact resistance by approximately 40 percent.

2010 ◽  
Vol 218 (1) ◽  
pp. 59-74 ◽  
Author(s):  
David A. Reed ◽  
Laura B. Porro ◽  
Jose Iriarte-Diaz ◽  
Justin B. Lemberg ◽  
Casey M. Holliday ◽  
...  

2008 ◽  
Author(s):  
Fuqiang Wu ◽  
Frank Puskar ◽  
Pascinthe Saad

Concrete Gravity Based Structure (GBS) provides an opportunity for the storage of Liquefied Natural Gas (LNG) and represents one of the key elements of an LNG receiving and regasification terminal. The impact resistance of an offshore LNG GBS against accidental ship collision needs to be evaluated. Nonlinear elasto-plastic Finite Element Analysis (FEA) provides a useful numerical tool to assess the damage and evaluate the overall structural integrity of the GBS following a ship collision. In the work presented, a large capacity tanker was modeled using FEA and simulated to collide into a prototype concrete LNG GBS. An efficient, two-step approach was applied to estimate the damage levels caused by the striking tanker considering different approach speeds. Various benchmark tests were conducted to validate the steel and concrete FEA models to ensure the reliability of the analysis. The simulation shows that certain collisions can cause damage to both the tanker bow and the LNG GBS, depending upon the collision speed and the configuration of the colliding bodies. However, these collisions do not always result in a breach of the LNG containment. The results of this type of assessment can be used to assist in designing the LNG GBS to improve its impact resistance. The results can also be used in risk studies typical of these types of facilities.


Author(s):  
Satish C. Chaparala ◽  
Praveen R. Samala ◽  
Joshua M. Jacobs ◽  
Jonathan D. Pesansky

Response of brittle plate-like structures to impact loads (suddenly applied loads) has been the subject of many research studies. Specifically, glass used in various household, consumer electronics applications can be subjected to different kinds of impact loads. An ion-exchanged alumino-silicate glass developed by Corning Incorporated, also called Corning® Gorilla® Glass is used as cover glass for flat-panel televisions. One of the reliability tests that may be required for this application is that a steel ball of certain diameter is dropped from certain height at different locations on the glass panel mounted onto a frame. The requirement is that the glass should survive 2 J of impact energy at the center of the glass and 0.5 J of impact energy at the edges. These reliability requirements could change depending on the application and the customer. In this study, finite element analysis is carried out to understand the impact response of such glass panels. Experiments are conducted using strain gauges to measure the panel response at the center of glass with impacts up to 3.3 J. Finite element analysis results are then validated by comparing the predicted strain response with those of measurements.


2011 ◽  
Vol 11 (03) ◽  
pp. 563-580 ◽  
Author(s):  
HE GONG ◽  
MING ZHANG ◽  
YUBO FAN

Bone tissue material nonlinearity and large deformations within the trabecular network are important for the characterization of failure behavior of trabecular bone at both the apparent and tissue levels. Micro-finite element analysis (μFEA) is a useful tool for determining the mechanical properties of trabecular bone due to certain experimental difficulties. The aim of this study was to determine the effects of bone tissue nonlinear material properties on the apparent- and tissue-level mechanical parameters of trabecular bone using μFEA. A bilinear tissue constitutive model was proposed to describe the bone tissue material nonlinearity. Two trabecular specimens with different micro-architectures were taken as examples. The effects of four parameters, i.e., tissue Young's modulus, tissue yield strain in tension, tissue yield strain in compression, and post-yield modulus on the apparent yield stress/strain, tissue von Mises stress distribution, the amount of tissue elements yielded in compression and tension under compressive and tensile loading conditions were obtained using nine cases for different values of those parameters by totally 36 nonlinear μFEA. These data may provide a reference for more sophisticated evaluations of bone strength and the related fracture risk.


1989 ◽  
Vol 111 (3) ◽  
pp. 316-321 ◽  
Author(s):  
W. W. Teper ◽  
R. G. Sauve´

Transportation packagings for radioactive materials must withstand severe impact conditions without loss of integrity and without excessive permanent distortions in the seal regions. The compliance with the requirements may be shown either through extensive testing, elastic-plastic impact analysis, or a combination of both. Elastic-plastic finite element analysis, although less costly than testing, is usually expensive and time consuming. In this paper, simplified methods for determining the impact force are presented for the following impact cases of solid-walled casks: impact on a pin, impact on an edge, and impact on a corner. The results of the simplified methods are in good agreement with the results of elastic-plastic finite element analysis. It is shown that in each case almost the entire impact energy is dissipated by the plastic deformation of the material in the impact zone.


Author(s):  
H-B Hellweg ◽  
M A Crisfield

Three-dimensional material test data for orthotropic laminae are difficult to obtain. Consequently, various simplifications are made for the material properties of individual layers in a finite element analysis, ranging from the assumption of transversely isotropic layers to applying two-dimensional material data in a three-dimensional analysis. In order to investigate the impact and validity of such simplifications, the sensitivity of the stresses and deformations in a finite element analysis on the material properties was investigated.


2021 ◽  
Vol 13 (3) ◽  
pp. 1048
Author(s):  
Samuel Brodeur ◽  
Van Ngan Lê ◽  
Henri Champliaud

High-energy internal failures of transformers are catastrophic events which are hardly predictable. For this reason, a full-scale controlled experiment represents a valuable learning opportunity to gather accurate information about sequence of events during the very short time in which the failure occurs. Controlled parameters include tank design, material properties, experimental load and measurements. In this paper, we present a detailed investigation using nonlinear finite-element analysis of a 210-MVA transformer high-pressure experiment. We begin by evaluating the relationship between internal arcing pressure rise and tank expansion characteristics. Since this relationship is not linear due to geometric and material nonlinearities, an iterative process is proposed to ensure result accuracy. Stress–strain material properties are retrieved by tension experiments of specimens extracted from the tested tank to enable accurate comparison of numerical and experimental results. It is shown in this paper that nonlinear material parameters have a small influence on the tank pressure rise, but a significant one on large strain prediction and therefore the true stress-strain curve is recommended. In addition, the ductile rupture criterion based on the ultimate plastic strain of the material correlates with the experimental and explicit dynamic analysis results. This can ensure a certain design margin for tank rupture prevention.


Sign in / Sign up

Export Citation Format

Share Document