On the Pressure Rippling and Roughness Deformation in Elastohydrodynamic Lubrication of Rough Surfaces

1993 ◽  
Vol 115 (3) ◽  
pp. 439-444 ◽  
Author(s):  
L. Chang ◽  
M. N. Webster ◽  
A. Jackson

The objective of this paper is to conduct a qualitative analysis on the effects of lubricant shear thinning, lubricant shear heating and the roughness-induced transients on the pressure rippling and roughness deformation that occurs under elastohydrodynamic lubrication (EHL) conditions. To facilitate the analysis, the numerical solutions to an example problem of EHL line contact between a perfectly smooth surface and a sinusoidal rough surface are presented. This micro-EHL problem is first solved using the conventional model of a Newtonian lubricant and a stationary rough surface under isothermal conditions. It is then solved by including the non-Newtonian effects, the roughness-induced transients and the thermal effects in sequence, so that the changes in the results brought about by each of these elements can be clearly observed and then analyzed. The analysis, which is not limited to the model problem solved in this paper, suggests that misleading results of large pressure rippling and flattened surface roughness are obtained using the Newtonian lubricant models under steady-state, isothermal conditions. Much less micro-deformation of the surface roughness is actually produced because the magnitude of the pressure ripples is greatly limited by either the lubricant non-Newtonian shear thinning and shear heating or the roughness-induced transients.

1991 ◽  
Vol 113 (1) ◽  
pp. 110-115 ◽  
Author(s):  
L. Chang ◽  
M. N. Webster

This paper reports some results of rough-surface, elastohydrodynamically lubricated (EHD) contacts obtained using a previously developed transient EHD model. The surface roughness is modeled with sinusoidal functions of small wavelength compared to the contact zone. Results are presented showing how the operating conditions affect the film thickness, micro-deformation of the roughness, and the pressure perturbations due to motion and interaction of roughness within the contact. This preliminary work suggests that the entraining velocity and the slide-to-roll ratio are the most sensitive parameters influencing the lubrication process of rough-surface EHD contacts.


1999 ◽  
Vol 121 (2) ◽  
pp. 333-340 ◽  
Author(s):  
James W. White

Earlier analytical solutions by White (1980, 1983, 1992, 1993) included Couette effects, transverse diffusion, and mass storage in a model lubrication equation for narrow width wavy surface high bearing number gas films. The model lubrication equation did not include longitudinal diffusion effects due to the high bearing number restriction. Crone et al. (1991), however, reported numerical solutions of the full Reynolds equation for a gimbal mounted slider subject to wavy surface roughness. The first objective of this work is to reconcile the differences observed between the reported results of White and those of Crone et al. for moving and stationary roughness. The second objective is to describe how to best apply what appears to be a universal property of a high bearing number gas film subjected to a rough surface. Each solution of the model lubrication equation by White (1980, 1983, 1992, 1993) produced a product term based on local gas pressure and clearance (Z = Ph) that is independent of roughness details but which is dependent on the statistical properties of the roughness. In the present work, this characteristic is treated as a universal property of all high bearing number rough surface gas films. The product variable Z = Ph is introduced into the generalized full lubrication equation, and the resulting lubrication equation is ensemble averaged before a solution is attempted. This removes the short length and time scale effects due to the surface roughness. Solution of the ensemble averaged equation for Z(x, y, t) then follows by standard analytical or numerical methods. The unaveraged pressure is then given by P(x, y, t) = Z(x, y, t)/h(x, y, t) and the ensemble averaged or mean pressure at a point is computed from Pm(x, y, t) = Z(x, y, t)E(1/h(x, y, t)), where E(1/h) represents the ensemble average of 1/h. Using this technique, numerical solutions of the full generalized lubrication equation based on kinetic theory were obtained for a low flying gimbal mounted slider. Results indicate that the nominal flying height increases and the minimum flying height decreases as surface roughness increases.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Wei Pu ◽  
Jiaxu Wang ◽  
Dong Zhu

Numerical solution of mixed elastohydrodynamic lubrication (EHL) is of great importance for the study of lubrication formation and breakdown, as well as surface failures of mechanical components. However, converged and accurate numerical solutions become more difficult, and solution process with a fixed single discretization mesh for the solution domain appears to be quite slow, especially when the lubricant films and surface contacts coexist with real-machined roughness involved. Also, the effect of computational mesh density is found to be more significant if the average film thickness is small. In the present study, a set of sample cases with and without machined surface roughness are analyzed through the progressive mesh densification (PMD) method, and the obtained results are compared with those from the direct iteration method with a single fixed mesh. Besides, more numerical analyses with and without surface roughness in a wide range of operating conditions are conducted to investigate the influence of different compound modes in order to optimize the PMD procedure. In addition, different initial conditions are used to study the effect of initial value on the behaviors of this transient solution. It is observed that, no matter with or without surface roughness considered, the PMD method is stable for transient mixed EHL problems and capable of significantly accelerating the EHL solution process while ensuring numerical accuracy.


Author(s):  
Amir Torabi ◽  
Saleh Akbarzadeh ◽  
Mohammadreza Salimpour

In this study, a numerical model is developed to show the performance improvement of a cam–follower mechanism when using a roller type follower compared to the flat-faced follower. Nonconformal geometry besides the thermal effects due to the shearing of the lubricant film results in formation of a thin film in which the asperities contribute in carrying the load. The numerical model is developed in which the geometry, load, speed, lubricant properties, and the surface roughness profile is taken as input and the film thickness and friction coefficient as a function of cam angle are predicted. The asperities are assumed to have elastic, elasto-plastic, and plastic deformation. Simulation results indicated that the thermal effects cannot be neglected. Surface roughness is also a key parameter that affects the pressure distribution, film thickness, and friction coefficient. Finally, asperity and hydrodynamic pressure is reported and the performance of the two mechanisms is compared. Roller follower has a considerable preference in terms of friction coefficient compared to flat-faced follower. The minimum film thickness, however, is slightly larger in the flat follower.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
H. Sojoudi ◽  
M. M. Khonsari

This paper presents a simple approach to predict the behavior of friction coefficient in the sliding lubricated point contact. Based on the load-sharing concept, the total applied load is supported by the combination of hydrodynamic film and asperity contact. The asperity contact load is determined in terms of maximum Hertzian pressure in the point contact while the fluid hydrodynamic pressure is calculated through adapting the available numerical solutions of elastohydrodynamic lubrication (EHL) film thickness formula for smooth surfaces. The simulations presented cover the entire lubrication regime including full-film EHL, mixed-lubrication, and boundary-lubrication. The results of friction, when plotted as a function of the sum velocity, result in the familiar Stribeck-type curve. The simulations are verified by comparing the results with published experimental data. A parametric study is conducted to investigate the influence of operating condition on the behavior of friction coefficient. A series of simulations is performed under various operating conditions to explore the behavior of lift-off speed. An equation is proposed to predict the lift-off speed in sliding lubricated point contact, which takes into account the surface roughness.


Author(s):  
J.Y Jang ◽  
M.M Khonsari ◽  
S Bair

Realistic prediction of the characteristics of the elastohydrodynamic lubrication (EHL) contact requires consideration of the appropriate constitutive equation for the lubricant. In many applications, the lubricant exhibits a shear-thinning behaviour which significantly affects the film thickness. In this paper, we present a generalized formulation that can efficiently treat shear-thinning fluids with provision for compressibility in the EHL line contact. Specifically, the Carreau model and the sinh-law model are investigated. An extensive set of numerical solutions and comparison with experiments reveal that the Carreau equation properly captures the film thickness behaviour under both rolling and sliding conditions.


1973 ◽  
Vol 95 (4) ◽  
pp. 417-423 ◽  
Author(s):  
J. A. Greenwood ◽  
J. J. Kauzlarich

In EHL, the oil film thickness of rollers is controlled by the rate at which the oil is drawn into the conjunction of the disks by the moving surfaces of the rollers. The theory often assumes isothermal conditions in the inlet although it can be shown that the maximum shear rate often exceeds 106 sec−1, even in pure rolling. A theoretical analysis is presented for the oil temperature rise in the inlet of rollers, and the result is applied to predict the consequent film thickness. It is found that thermal effects on film thickness are only negligible at low rolling speeds. A comparison with experiment supports the conclusion that the thinning of the film thickness below that predicted by isothermal theory is substantially explained by inlet shear heating of the lubricant.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
J. Y. Jang ◽  
M. M. Khonsari

Applications involving highly loaded elastohydrodynamic lubrication (EHL), particularly when the lubricant experiences shear thinning, operating with small film thicknesses may necessitate consideration of surface asperities. A modified Reynolds equation with provision for surface roughness and shear thinning is treated to predict the pressure and surface asperity effect in an EHL line-contact. The unknown in the Reynolds equation is the hydrodynamic pressure instead of the total pressure to ensure that the pressure boundary condition at the outlet is properly posed. The Carreau viscosity model is used for characterizing the shear thinning behavior, Patir and Cheng flow factors for taking into the influence of roughness on the lubricating film, and Greenwood–Trip for determination of pressure at the asperity level. The modified Reynolds equation is solved for the hydrodynamic pressure instead of the total pressure with appropriately defined boundary conditions.


2013 ◽  
Vol 651 ◽  
pp. 505-510 ◽  
Author(s):  
Khanittha Wongseedakaew

This paper presents the effects of transient rough surface thermo-elastohydrodynamic lubrication (TEHL) of rollers for soft material with non-Newtonian fluid base on power law model. The time independent modified Reynolds equation, energy equation and elasticity equation were solved numerically using finite different method, Newton-Raphson method and multigrid multilevel method to obtain the film pressure profiles, film thickness profiles and friction coefficient in the contact region. The simulation results show surface roughness has effect on film thickness but its effect on film temperature is insignificant. The minimum film thickness decreases while the coefficient increases when the amplitude of surface roughness increases. Meanwhile, increasing applied loads causes the friction coefficient to decrease.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
S. Akbarzadeh ◽  
M. M. Khonsari

A model is developed for predicting the performance of spur gears with provision for surface roughness. For each point along the line of action, the contact of pinion and gear is replaced by that of two cylinders. The radii of cylinders, transmitted load, and contact stress are calculated, and lubricant film thickness is obtained using the load-sharing concept of Johnson et al. (1972, “A Simple Theory of Asperity Contact in Elastohydrodynamic Lubrication,” Wear, 19, pp. 91–108) To validate the analysis, the predicted film thickness and the friction coefficient are compared to published theoretical and experimental data. The model is capable of predicting the performance of gears with non-Newtonian lubricants—such as that of shear thinning lubricants—often used in gears. For this purpose, a correction factor for shear thinning film thickness introduced by Bair (2005, “Shear Thinning Correction for Rolling/Sliding Electrohydrodynamic Film Thickness,” Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol., 219, pp. 1–6) has been employed. The results of a series of simulations presenting the effect of surface roughness on the friction coefficient are presented and discussed. The results help to establish the lubrication regime along the line of action of spur gears.


Sign in / Sign up

Export Citation Format

Share Document