Rotordynamics of a Mechanical Face Seal Riding on a Flexible Shaft

1994 ◽  
Vol 116 (2) ◽  
pp. 345-350 ◽  
Author(s):  
An Sung Lee ◽  
Itzhak Green

A mechanical face seal is a triboelement intended to minimize leakage between a rotating shaft and a housing, while allowing the shaft to rotate as freely as possible. All dynamic analysis to date have concentrated on the seal itself. In reality, however, especially in high speed turbomachinery, shafts are made flexible and the dynamics of seals must be coupled with the dynamics of shafts. (Perhaps the dynamics of other triboelements, such as gears, bearings, etc., have to be included as well.) In this work the complex extended transfer matrix method is established to solve for the steady state response of a noncontacting flexibly mounted rotor mechanical face seal that rides on a flexible shaft. This method offers a complete dynamic analysis of a seal tribosystem, including effects of shaft inertia and slenderness, fluid film, secondary seal, flexibly mounted rotating element, and axial offset of the rotor center of mass. The results are then compared to those obtained from an analysis that implicitly assumed the shaft rigid. The comparison shows that shaft dynamics can greatly affect the seal performance even at relatively low speeds.

1989 ◽  
Vol 111 (2) ◽  
pp. 200-206 ◽  
Author(s):  
I. Green

The dynamic behavior of a noncontacting rotary mechanical face seal is analyzed. A closed-form solution is presented for the response of a flexibly mounted rotor to forcing misalignments which normally exist due to manufacturing and assembly tolerances. The relative misalignment between the rotor and the stator, which is the most important seal parameter, has been found to be time dependent with a cyclically varying magnitude. The relative response is minimum when support stiffness and damping are minimum. The gyroscopic couple is shown to have a direct effect on the dynamic response. This effect is enhanced at high speeds, and depending on the ratio between the transverse and polar moments of inertia, it can either decrease or increase the dynamic response. Its effect is most beneficial to seal performance when the rotor is a “short disk.” A numerical example demonstrates that a flexibly-mounted rotor seal outperforms a flexibly mounted stator seal with regard to the total relative misalignment, the critical stator misalignment, and the critical speed.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Ruiyang Wang ◽  
Bingen Yang

Abstract In Part I of this two-part paper, a new benchmark transient model of Inductrack systems is developed. In this Part II, the proposed model, which is governed by a set of non-linear integro-differential governing equations, is used to predict the dynamic response of Inductrack systems. In the development, a state-space representation of the non-linear governing equations is established and a numerical procedure with a specific moving circuit window for transient solutions is designed. The dynamic analysis of Inductrack systems with the proposed model has two major tasks. First, the proposed model is validated through comparison with the noted steady-state results in the literature. Second, the transient response of an Inductrack system is simulated and analyzed in several typical dynamic scenarios. The steady-state response results predicted by the new model agree with those obtained in the previous studies. On the other hand, the transient response simulation results reveal that an ideal steady-state response can hardly exist in those investigated dynamic scenarios. It is believed that the newly developed transient model provides a useful tool for dynamic analysis of Inductrack systems and for in-depth understanding of the complicated electro-magneto-mechanical interactions in this type of dynamic systems.


Author(s):  
Tyler J. Selstad ◽  
Kambiz Farhang

Abstract An efficient method for obtaining the steady-state response of linear systems with periodically time varying coefficients is developed. The steady-state solution is obtained by dividing the fundamental period into a number of intervals and establishing, based on a fourth-order Rung-Kutta formulation, the relation between the response at the start and end of the period. Imposition of periodicity condition upon the response facilitates computation of the initial condition that yields the steady-state values in a single pass; i.e. integration over only one period. Through a practical example, the method is shown to be more accurate and computationally more efficient than other known methods for computing the steady-state response.


Author(s):  
Hsin-Ting J. Liu ◽  
Donald R. Flugrad

Abstract The responses for different design and simulation conditions, including various speed and damping ratios, are investigated for an elastic cam-follower system discussed in Part I. The location of a single dominant pair of characteristic multipliers of the inhomogeneous periodic linear system is found to have significant influence on the steady state response.


Author(s):  
Philip Varney ◽  
Itzhak Green

Mechanical face seals are constitutive components of turbomachines, which in turn can be constitutive to other systems (e.g. aircraft). Furthermore, the rotating element of a face seal is inextricably coupled to the turbomachine via a flexible mount, and the stationary seal element is coupled to the rotating seal element via the fluid film existing between the seal faces. Consequentially, understanding interactions between the seal and turbomachine is important for quantifying seal performance and improving its design. With few exceptions, previous works study the face seal dynamics independent from the rotordynamics. In addition, most prior investigations consider only angular and axial seal dynamics and neglect eccentric (i.e. lateral) deflections of the seal element(s). For the first time, this work develops a comprehensive and novel model of a mechanical face seal in the inertial reference frame including coupled rotordynamics and inertial maneuver loads of the overall system. The model is developed for a general seal geometry where both seal elements, stationary and rotating, are flexibly mounted and allowed to undergo angular, axial, and eccentric deflections. In addition, the seal model presented here accounts for transient operation, fluid shear forces, seal face contact, friction, and thermoelastic deformation. Finally, various faults due to manufacturing imperfections, component flaws, and/or installation errors can be accounted for by incorporating static angular misalignment of both seal elements, dynamic angular misalignment of the rotating seal element, eccentric rotating imbalance, and axial offset of the rotating seal element center of mass. Throughout this work, the equations of motion developed are valid for both steady-state and transient operation. This comprehensive model significantly advances the state of the art in mechanical face seal dynamic modeling and represents a pivotal step towards analyzing seal performance regarding a broad diversity of realistic problems.


Sign in / Sign up

Export Citation Format

Share Document