Thermal Tip Clearance Control for Centrifugal Compressor of an APU Engine

1994 ◽  
Vol 116 (4) ◽  
pp. 629-634 ◽  
Author(s):  
G. Eisenlohr ◽  
H. Chladek

To master today’s demand for efficiency and compactness of centrifugal compressor components for small gas turbine engines the main attention must not only be given to the aerodynamic design of the impeller and diffuser components, but also to the installation situation of the surrounding parts. A vital aspect is the tip clearance control between impeller and shroud casing over the total operating range. Using the radial compressor for a small gas turbine engine, developed at BMW Rolls-Royce, the importance of tip clearance control is demonstrated. The possibilities for influencing and optimizing passive tip clearance control by design features are described; transient expansion processes must be considered when using a thermal tip clearance control. The results of the design calculations are compared with the results on the test stand and the engine itself. An effort is made to find a qualitative influence of tip clearance to the engine power output at operating conditions. This qualitative description is substantiated by test results with different tip clearances at the compressor teststand.

Author(s):  
G. Eisenlohr ◽  
H. Chladek

To master todays demand for efficiency and compactness of centrifugal compressor components for small gasturbine engines the main attention must not only be given to the aerodynamic design of the impeller and diffuser components, but also to the installation situation of the surrounding parts. A vital aspect is the tip clearance control between impeller and shroud casing over the total operating range. Using the radial compressor for a small gasturbine engine, developed at BMW Rolls-Royce, the importance of tip clearence control is demonstrated. The possibilities for influencing and optimizing passive tip clearance control by design features are described; transient expansion processes must be considered when using a thermal tip clearance control. The results of the design calculations are compared with the results on the teststand and the engine itself. An effort is made to find a qualitative influence of tip clearance to the engine power output at operating conditions. This qualitative description is substantiated by test results with different tip clearances at the compressor teststand.


2021 ◽  
Vol 20 (3) ◽  
pp. 152-159
Author(s):  
A. M. Faramazyan ◽  
S. S. Remchukov ◽  
I. V. Demidyuk

The application of casting technologies in the production of parts and assemblies of small-size gas turbine engines is justified in the paper. The technology of vacuum casting in gypsum molds was tested during the production of an experimental centrifugal compressor of a small-size gas turbine engine. On the basis of a 3D model of the designed centrifugal compressor, computational studies of vacuum casting were carried out and rational parameters of the technological process were determined. Prototypes of the developed centrifugal compressor of a small-size gas turbine engine were made. The results of calculations and the performed technological experiment confirmed the fill rate of the gating form and the absence of short pour. The distribution of shrinkage porosity and cavities corresponds to the design values and is concentrated in the central part of the casting that is subjected to subsequent machining. The area of the blades, disc and sleeve is formed without defects. The use of casting technologies in the production of parts and assemblies of small-size gas turbine engines assures the required quality with a comparatively low price of the finished product, making it possible to achieve the balance between the cost of the technology and the quality of the product made according to this technology.


Author(s):  
Richard Grzybowski ◽  
George Foyt ◽  
Hartwig Knoell ◽  
William Atkinson ◽  
Josef Wenger

This paper describes the development of a Microwave Tip Clearance Measurement System for use in the gas turbine environment Applications for this sensor include basic tip clearance measurements, seal wear measurement and active blade tip clearance control in gas turbine engines. The system being developed was designed for useful operation to temperatures exceeding 1093°F, since only ceramic materials are directly exposed in the gas path. Other advantages of this microwave approach to blade tip clearance sensing include the existence of an inherent self-calibration in the sensor that permits accurate operation despite temperature variations and possible abrasion by the rotating blades. Earlier experiments designed to simulate this abrasion of the sensor head indicated that rubs as deep as 1 mm (40 mils) were easily tolerated. In addition, unlike methods based upon phase measurements, this method is very insensitive to cable vibration and length variations. Finally, this microwave technique is expected to be insensitive to fuel and other engine contamination, since it is based on the measurement of resonant frequencies, which are only slightly affected by moderate values of loss due to contamination.


Author(s):  
Hooshang Heshmat ◽  
James F. Walton ◽  
Brian D. Nicholson

In this paper, the authors present the results of recent developments demonstrating that ultra-high temperature compliant foil bearings are suitable for application in a wide range of high temperature turbomachinery including gas turbine engines, supercritical CO2 power turbines and automotive turbochargers as supported by test data showing operation of foil bearings at temperatures to 870°C (1600°F). This work represents the culmination of efforts begun in 1987, when the U.S. Air Force established and led the government and industry collaborative Integrated High Performance Turbine Engine Technology (IHPTET) program. The stated goal of IHPTET was to deliver twice the propulsion capability of turbine engines in existence at that time. Following IHPTET, the Versatile Affordable Advanced Turbine Engines (VAATE) program further expanded on the original goals by including both versatility and affordability as key elements in advancing turbine engine technology. Achieving the stated performance goals would require significantly more extreme operating conditions including higher temperatures, pressures and speeds, which in turn would require bearings capable of sustaining temperatures in excess of 815°C (1500°F). Similarly, demands for more efficient automotive engines and power plants are subjecting the bearings in turbochargers and turbogenerators to more severe environments. Through the IHPTET and VAATE programs, the U.S. has made considerable research investments to advancing bearing technology, including active magnetic bearings, solid and vapor phase lubricated rolling element bearings, ceramic/hybrid ceramic bearings, powder lubricated bearings and compliant foil gas bearings. Thirty years after the IHPTET component goal of developing a bearing capable of sustained operation at temperatures above 540°C and potentially as high as 815°C (1500°F) recent testing has demonstrated achievement of this goal with an advanced, ultra-high temperature compliant foilgas bearing. Achieving this goal required a combination of high temperature foil material, a unique elastic-tribo-thermal barrier coating (KOROLON 2250) and a self-adapting compliant configuration. The authors describe the experimental hardware designs and design considerations of the two differently sized test rigs used to demonstrate foil bearings operating above 815°C (1500°F). Finally, the authors present and discuss the results of testing at temperatures to 870°C (1600°F).


Author(s):  
Xiying Niu ◽  
Feng Lin ◽  
Weishun Li ◽  
Chen Liang ◽  
Shunwang Yu ◽  
...  

Gas turbine engines are widely used as the marine main power system. However, they can’t reverse like diesel engine. If the reversal is realized, other ways must be adopted, for example, controllable pitch propeller (CPP) and reversible gearing. Although CPP has widespread use, the actuator installation inside the hub of the propeller lead to the decrease in efficiency, and it takes one minute to switch “full speed ahead” to “full speed astern”. In addition, some devices need to be added for the reversible gearing, and it takes five minutes to switch from “full speed ahead” “to “full speed astern”. Based on the gas turbine engine itself, a reversible gas turbine engine is proposed, which can rotate positively or reversely. Most important of all, reversible gas turbine engine can realize operating states of “full speed ahead”, “full speed astern“ and “stop propeller”. And, it just takes half of one minute to switch “full speed ahead” to “full speed astern”. Since reversible gas turbine engines have compensating advantages, and especially in recent years computational fluid dynamics (CFD) technology and turbine gas-dynamics design level develop rapidly, reversible gas turbine engines will be a good direction for ship astern. In this paper, the power turbine of a marine gas turbine engine was redesigned by three dimensional shape modification, and the flow field is analyzed using CFD, in order to redesign into a reverse turbine. The last stage vanes and blades of this power turbine were changed to double-layer structure. That is, the outer one is reversible turbine, while the inner is the ahead one. Note that their rotational directions are opposite. In order to realize switching between rotation ahead and rotation astern, switching devices were designed, which locate in the duct between the low pressure turbine and power turbine. Moreover, In order to reduce the blade windage loss caused by the reversible turbine during working ahead, baffle plates were used before and after the reversible rotor blades. This paper mainly studied how to increase the efficiency of the reversible turbine stage, the torque change under different operating conditions, rotational speed and rotational directions, and flow field under typical operating conditions. A perfect profile is expected to provide for reversible power turbine, and it can decrease the blade windage loss, and increase the efficiency of the whole gas turbine engine. Overall, the efficiency of the newly designed reversible turbine is up to 85.7%, and the output power is more than 10 MW, which can meet requirements of no less than 30% power of rated condition. Most importantly, the shaft is not over torque under all ahead and astern conditions. Detailed results about these are presented and discussed in the paper.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 339-357 ◽  
Author(s):  
Bing Yu ◽  
Hongwei Ke ◽  
Enyu Shen ◽  
Tianhong Zhang

Blade tip clearance is one of the important parameters affecting the performance, safety and stability of a gas turbine engine. However, it is difficult to measure the tip clearance in real time and accurately during the development and test process of an engine. In order to promote the development of tip clearance–measuring technology and the optimal design of the gas turbine engine, some typical measuring methods of tip clearance and a novel measuring method based on AC discharge are introduced. In this article, the significance for measuring tip clearance of an engine is illustrated first. Then, operating principles, characteristics and developments of those typical measurement approaches are introduced. After that, these methods are analyzed, and the particular characteristic of each measuring approach is summarized.


1981 ◽  
Vol 103 (2) ◽  
pp. 457-460 ◽  
Author(s):  
J. P. Barranger ◽  
M. J. Ford

The need for blade tip clearance instrumentation has been intensified recently by advances in technology of gas turbine engines. A new laser-optical measurement system has been developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in rotating component rigs and complete engines. The system is applicable to fan, compressor and turbine blade tipe clearance measurements. The engine mounted probe is particularly suitable for operation in the extreme turbine environment. The measurement system consists of an optical subsystem, an electronic subsystem and a computing and graphic terminal. Bench tests and environmental tests were conducted to confirm operation at temperatures, pressures, and vibration levels typically encountered in an operating gas turbine engine.


Author(s):  
R. K. Agrawal

This paper presents an approach to selecting the various ratings for Gas Turbine engines in the fixed wing airplane application. The approach followed is first to estimate the minimum airplane power demands to pass its certification requirements under worst operating conditions. These power demands are then checked against those available from the engine within its certification requirements. Meaningful trade off studies, involving both the airplane and engine designers, can thus be conducted fairly early on in the airplane/engine design cycle to arrive at engine rating’s which will best suit both the vehicle and its power plant within their respective certification constraints.


Author(s):  
G. I. Ekong ◽  
C. A. Long ◽  
P. R. N. Childs

To improve the thermodynamic efficiency of aircraft engine and other gas turbine engines, higher and higher pressure ratios are desired in conjunction with more refined engine cycles. In the high pressure compressor, higher pressure ratios result in lower aspect blades and enhanced sensitivity of the engine design to radial clearance effects. The tip clearance in the axial flow compressor of modern commercial civil aero-engines is of critical importance in terms of both mechanical integrity and performance. Typically as the clearance between the compressor blade tips and the casing increases, the aerodynamic efficiency will decrease and therefore the specific fuel consumption and operating costs will increase, and the clearance is therefore of critical importance to civil airline operators and their customers alike. A design exercise was performed and a series of conceptual solutions were developed using the theory of inventive problem solving (TRIZ) process and their potential viability in clearance control was investigated with thermal modelling. TRIZ was selected as an appropriate tool as the issue was long-standing having been the focus of previous projects, and robust design solutions were being sought. In order to validate the concepts, use was made of a test facility developed at the University of Sussex, incorporating a rotor and an inner shaft scaled down from a Rolls Royce Trent aeroengine to a ratio of 0.7:1. The mechanical design of the test facility allows the simulation of flow conditions in the HP compressor cavity equivalent to the Trent 1000 aero-engine, with a rotational speed of up to 10000 rpm. The idle and maximum take-off conditions in the square cycle correspond to in-cavity rotational Reynolds numbers of 3.1×106 ≤ Reφ ≤ 1.0×107. The finite element thermomechanical model has been built to validate the engine measurements. This paper describes the use of TRIZ and the development of a selected concept and the detailed evaluation for reduction and control of tip clearance in HP compressors. This was achieved through the reduction in the compressor disc heat expansion time constant by improving drum heat transfer using bleed air from the compressor core flow. This paper explores the trade-offs between clearance and efficiency and develops and explores concepts to control the compressor tip clearance throughout the engine operating cycle. The project involved modelling of potential solutions and use of experimental facilities, a rotating compressor cavity rig, in order to explore the physical principles and demonstrate proof of concept for controlling tip clearance in HP compressors of gas turbine engines.


Author(s):  
M. I. Yaras ◽  
P. Orsi

This study examines the effects of periodic inflow unsteadiness on the flow development through fishtail diffusers utilized on small gas-turbine engines. The periodic unsteadiness is due to the distortion of the flow in the peripheral direction at the exit of the centrifugal compressor impeller, caused by the jet-wake type of flow discharging from each passage of the impeller. The study consists of detailed measurements in a large-scale fishtail diffuser rig with a geometry that is typical of those used in small gas turbine engines. An unsteady-flow generator is used to approximate the type of diffuser-inflow conditions that exist at the exit of centrifugal compressor impellers. Detailed measurements of the transient velocity field have been performed at the inlet and at four cross-sectional planes throughout the diffuser using a miniature 4-wire probe. These measurements involve frequencies of inflow unsteadiness corresponding to design as well as off-design operating conditions. The measured velocity field is analyzed in a time-averaged sense and in the context of previously-performed steady-flow measurements. Results show significant effects of inflow unsteadiness at lower frequencies on the flow field in the diffuser, which translates into a substantial impact on the pressure recovery of the diffuser. In addition to providing insight into the physics of this flow, the experimental results presented here constitute a detailed and accurate data set that can be used to validate computational-fluid-dynamics codes for this application.


Sign in / Sign up

Export Citation Format

Share Document