Numerical Analysis on the Feasibility of Laser Microwelding of Metals by Femtosecond Laser Pulses Using ABAQUS

Author(s):  
Dongkyun Lee ◽  
Elijah Kannatey-Asibu

Ultrafast lasers of subpicosecond pulse duration have the potential for laser microwelding of micronscale fusion zone. Due to the extremely short pulse duration, laser-metal interaction involving ultrafast laser pulses should be analyzed using the two-temperature model. In this study, the two-temperature model is analyzed using ABAQUS to study the feasibility of laser microwelding with ultrafast laser. A material model is constructed using material properties and the subsurface boiling model. The model is validated using experimental results from the literature. Laser processing parameters of repetition rate, pulse duration, and focal radius are then investigated, in terms of molten pool generated in the material and requirements on those parameters for laser microwelding using ultrafast lasers are discussed.

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 783
Author(s):  
Hiromitsu Kiriyama ◽  
Alexander S. Pirozhkov ◽  
Mamiko Nishiuchi ◽  
Yuji Fukuda ◽  
Akito Sagisaka ◽  
...  

Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.


2012 ◽  
Vol 12 (4) ◽  
pp. 105-108 ◽  
Author(s):  
E. Majchrzak ◽  
J. Dziatkiewicz

Abstract Thin metal film subjected to a short-pulse laser heating is considered. The parabolic two-temperature model describing the temporal and spatial evolution of the lattice and electrons temperatures is discussed and the melting process of thin layer is taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.


2021 ◽  
Author(s):  
Amirkianoosh Kiani

The main aim of this thesis is to develop a new method for direct micro/nano amorphization/oxidation of silicon using femtosecond laser irradiation and its applications in maskless lithography and solar cell fabrication. Amorphization and oxidation occur when crystalline silicon is exposed to the irradiation of femtosecond laser pulses below the ablation threshold. Mechanisms of morphization and oxidation were discussed and the surface temperature model was developed to study the relation between laser parameters and observed amorphization and oxidation. A systematic theoretical and experimental study of the influence of the laser parameters on the quality of amorphorized area and the size of the feature fabricated through amorphization has been studied. It was found that during the process of silicon amorphization and oxidation, the higher repetition rate of laser pulses yields smooth morphology with better repeatability. Increasing pulse duration and number of pulses were seen to increase the line width. However, increasing the number of pulses does not result in ablation of the target area. An analytical model was developed for the calculation of the average surface temperature after n-pulses. The effect of the laser pulse width was investigated by developing an analytical model for the calculation of the non-dimensional surface temperature with various pulse widths. It was found from experimental and analytical results that for a constant power and repetition rate, an increase in the pulse duration corresponds to a significant increase in the surface temperature. It results in an increase in the amount of modified material as well as improvement of light absorption in the case of amorphization. The main aim of this thesis is to develop a new method for direct micro/nano amorphization/oxidation of silicon using femtosecond laser irradiation and its applications in maskless lithography and solar cell fabrication.Amorphization and oxidation occur when crystalline silicon is exposed to the irradiation of femtosecond laser pulses below the ablation threshold. Mechanisms of morphization and oxidation were discussed and the surface temperature model was developed to study the relation between laser parameters and observed amorphization and oxidation. A systematic theoretical and experimental study of the influence of the laser parameters on the quality of amorphorized area and the size of the feature fabricated through amorphization has been studied. It was found that during the process of silicon amorphization and oxidation, the higher repetition rate of laser pulses yields smooth morphology with better repeatability. Increasing pulse duration and number of pulses were seen to increase the line width. However, increasing the number of pulses does not result in ablation of the target area. An analytical model was developed for the calculation of the average surface temperature after n-pulses.The effect of the laser pulse width was investigated by developing an analytical model for the calculation of the non-dimensional surface temperature with various pulse widths. It was found from experimental and analytical results that for a constant power and repetition rate, an increase in the pulse duration corresponds to a significant increase in the surface temperature. It results in an increase in the amount of modified material as well as improvement of light absorption in the case of amorphization.The amorphous silicon and silicon oxide can act as an etch stop. Therefore, maskless lithography iis possible with the direct patterning (amorphization and oxidation) of crystalline silicon. Experimental results have proved the feasibility of the proposed concepts. The thin-film of amorphous silicon generated on the silicon substrate has a potential for use in photovoltaic devices and solar cell fabrication. In comparison with previous methods, the direct oxidation/amorphization of silicon induced by the femtosecond laser is a maskless single-step technique which offers a higher flexibility and reduced processing time.


Author(s):  
Fangjian Zhang ◽  
Shuchang Li ◽  
Anmin Chen ◽  
Yuanfei Jiang ◽  
Suyu Li ◽  
...  

The ultrafast dynamic process in semiconductor Ge irradiated by the femtosecond laser pulses is numerically simulated on the basis of van Driel system. It is found that with the increase of depth, the carrier density and lattice temperature decrease, while the carrier temperature first increases and then drops. The laser fluence has a great influence on the ultrafast dynamical process in Ge. As the laser fluence remains a constant value, though the overall evolution of the carrier density and lattice temperature is almost independent of pulse duration and laser intensity, increasing the laser intensity will be more effective than increasing the pulse duration in the generation of carriers. Irradiating the Ge sample by the femtosecond double pulses, the ultrafast dynamical process of semiconductor can be affected by the temporal interval between the double pulses.


Sign in / Sign up

Export Citation Format

Share Document