scholarly journals Deformation-Dependent Enzyme Mechanokinetic Cleavage of Type I Collagen

2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Karla E.-K. Wyatt ◽  
Jonathan W. Bourne ◽  
Peter A. Torzilli

Collagen is a key structural protein in the extracellular matrix of many tissues. It provides biological tissues with tensile mechanical strength and is enzymatically cleaved by a class of matrix metalloproteinases known as collagenases. Collagen enzymatic kinetics has been well characterized in solubilized, gel, and reconstituted forms. However, limited information exists on enzyme degradation of structurally intact collagen fibers and, more importantly, on the effect of mechanical deformation on collagen cleavage. We studied the degradation of native rat tail tendon fibers by collagenase after the fibers were mechanically elongated to strains of ε=1–10%. After the fibers were elongated and the stress was allowed to relax, the fiber was immersed in Clostridium histolyticum collagenase and the decrease in stress (σ) was monitored as a means of calculating the rate of enzyme cleavage of the fiber. An enzyme mechanokinetic (EMK) relaxation function TE(ε) in s−1 was calculated from the linear stress-time response during fiber cleavage, where TE(ε) corresponds to the zero order Michaelis–Menten enzyme-substrate kinetic response. The EMK relaxation function TE(ε) was found to decrease with applied strain at a rate of ∼9% per percent strain, with complete inhibition of collagen cleavage predicted to occur at a strain of ∼11%. However, comparison of the EMK response (TE versus ε) to collagen’s stress-strain response (σ versus ε) suggested the possibility of three different EMK responses: (1) constant TE(ε) within the toe region (ε<3%), (2) a rapid decrease (∼50%) in the transition of the toe-to-heel region (ε≅3%) followed by (3) a constant value throughout the heel (ε=3–5%) and linear (ε=5–10%) regions. This observation suggests that the mechanism for the strain-dependent inhibition of enzyme cleavage of the collagen triple helix may be by a conformational change in the triple helix since the decrease in TE(ε) appeared concomitant with stretching of the collagen molecule.

2002 ◽  
Vol 49 (2) ◽  
pp. 433-441 ◽  
Author(s):  
Anna Gajko-Galicka

Osteogenesis imperfecta (OI), commonly known as "brittle bone disease", is a dominant autosomal disorder characterized by bone fragility and abnormalities of connective tissue. Biochemical and molecular genetic studies have shown that the vast majority of affected individuals have mutations in either the COL1A1 or COL1A2 genes that encode the chains of type I procollagen. OI is associated with a wide spectrum of phenotypes varying from mild to severe and lethal conditions. The mild forms are usually caused by mutations which inactivate one allele of COL1A1 gene and result in a reduced amount of normal type I collagen, while the severe and lethal forms result from dominant negative mutations in COL1A1 or COL1A2 which produce structural defects in the collagen molecule. The most common mutations are substitutions of glycine residues, which are crucial to formation and function of the collagen triple helix, by larger amino acids. Although type I collagen is the major structural protein of both bone and skin, the mutations in type I collagen genes cause a bone disease. Some reports showed that the mutant collagen can be expressed differently in bone and in skin. Since most mutations identified in OI are dominant negative, the gene therapy requires a fundamentally different approach from that used for genetic-recessive disorders. The antisense therapy, by reducing the expression of mutant genes, is able to change a structural mutation into a null mutation, and thus convert severe forms of the disease into mild OI type I.


1990 ◽  
Vol 95 (4) ◽  
pp. 649-657 ◽  
Author(s):  
D.E. Birk ◽  
J.M. Fitch ◽  
J.P. Babiarz ◽  
K.J. Doane ◽  
T.F. Linsenmayer

The small-diameter fibrils of the chick corneal stroma are heterotypic, composed of both collagen types I and V. This tissue has a high concentration of type V collagen relative to other type I-containing tissues with larger-diameter fibrils, suggesting that heterotypic interactions may have a regulatory role in the control of fibril diameter. The interactions of collagen types I and V were studied using an in vitro self-assembly system. Collagens were purified from lathyritic chick embryos in the presence of protease inhibitors. The type V collagen preparations contained higher molecular weight forms of the alpha 1(V) and alpha 2(V) chains constituting 60–70% of the total. Rotary-shadow electron micrographs showed a persistence of a small, pepsin-sensitive terminal region in an amount consistent with that seen by electrophoresis. In vitro, this purified type V collagen formed thin fibrils with no apparent periodicity, while type I collagen fibrils had a broad distribution of large diameters. However, when type I collagen was mixed with increasing amounts of type V collagen a progressive and significant decrease in both the mean fibril diameter and the variance was observed for D periodic fibrils. The amino-terminal domain of the type V collagen molecule was required for this regulatory effect and in its absence little diameter reducing activity was observed. Electron microscopy using collagen type-specific monoclonal antibodies demonstrated that the fibrils formed were heterotypic, containing both collagen types I and V. These data indicate that the interaction of type V with type I collagen is one mechanism modulating fibril diameter and is at least partially responsible for the regulation of collagen fibril formation.


1993 ◽  
Vol 39 (4) ◽  
pp. 635-640 ◽  
Author(s):  
J Risteli ◽  
I Elomaa ◽  
S Niemi ◽  
A Novamo ◽  
L Risteli

Abstract We developed a radioimmunoassay (RIA) for the carboxy-terminal telopeptides of type I collagen (ICTP), cross-linked with the helical domain of another type I collagen molecule, after isolation from human femoral bone. The cross-linked peptide was liberated by digesting insoluble, denatured bone collagen either with bacterial collagenase or with trypsin, and purified by two successive reversed-phase separations on HPLC, with monitoring of pyridinoline-specific fluorescence. The purity of the peptide was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its origin in the type I collagen fibers was determined by amino-terminal amino acid sequencing. Polyclonal antibodies and a separation reagent containing second antibody and polyethylene glycol are used in the RIA. An immunologically identical, somewhat larger antigen is present in human serum; its concentration increases in multiple myeloma and in rheumatoid arthritis. The ICTP antigen seems to be cleared from the circulation by the kidneys, because glomerular filtration rates that are two-thirds of normal or less are associated with increased circulating ICTP concentrations. The CVs of the method are between 3% and 8% for a wide range of concentrations. The analysis of 40 serum samples can be completed in 4 h.


Glycobiology ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 830-843
Author(s):  
Ming Tang ◽  
Xiaocong Wang ◽  
Neha S Gandhi ◽  
Bethany Lachele Foley ◽  
Kevin Burrage ◽  
...  

Abstract Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.


1984 ◽  
Vol 217 (1) ◽  
pp. 103-115 ◽  
Author(s):  
J F Bateman ◽  
T Mascara ◽  
D Chan ◽  
W G Cole

Cultured skin fibroblasts from seven consecutive cases of lethal perinatal osteogenesis imperfecta (OI) expressed defects of type I collagen metabolism. The secretion of [14C]proline-labelled collagen by the OI cells was specifically reduced (51-79% of control), and collagen degradation was increased to twice that of control cells in five cases and increased by approx. 30% in the other two cases. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis revealed that four of the OI cell lines produced two forms of type I collagen consisting of both normally and slowly migrating forms of the alpha 1(I)- and alpha 2(I)-chains. In the other three OI cell lines only the ‘slow’ alpha (I)′- and alpha 2(I)′-chains were detected. In both groups inhibition of the post-translational modifications of proline and lysine resulted in the production of a single species of type I collagen with normal electrophoretic migration. Proline hydroxylation was normal, but the hydroxylysine contents of alpha 1(I)′- and alpha 2(I)′-chains purified by h.p.l.c. were greater than in control alpha-chains. The glucosylgalactosylhydroxylysine content was increased approx. 3-fold while the galactosylhydroxylysine content was only slightly increased in the alpha 1(I)′-chains relative to control alpha 1(I)-chains. Peptide mapping of the CNBr-cleavage peptides provided evidence that the increased post-translational modifications were distributed throughout the alpha 1(I)′- and alpha 2(I)′-chains. It is postulated that the greater modification of these chains was due to structural defects of the alpha-chains leading to delayed helix formation. The abnormal charge heterogeneity observed in the alpha 1 CB8 peptide of one patient may reflect such a structural defect in the type I collagen molecule.


2007 ◽  
Vol 283 (8) ◽  
pp. 4787-4798 ◽  
Author(s):  
Elena Makareeva ◽  
Edward L. Mertz ◽  
Natalia V. Kuznetsova ◽  
Mary B. Sutter ◽  
Angela M. DeRidder ◽  
...  

1995 ◽  
Vol 03 (04) ◽  
pp. 1033-1039
Author(s):  
JOHN PARKINSON ◽  
KARL E. KADLER ◽  
ANDY BRASS

The development of shape and form is intrinsic to the structure and function of many biological macromolecules including tubulin, actin and collagen. Type I collagen is a major structural protein in the body, providing mechanical strength for tissues such as bone and skin. It is present in the form of fibrils which display a regular banding pattern known as D-periodicity (where D = 67 nm). Type I collagen is a long rod-like molecule (300 nm ×1.5 nm) consisting of a triple helix formed from three polypeptide chains. In vivo and in vitro studies have shown that collagen molecules self-assemble in a regular D-staggered array to form striated fibrils. Further studies have shown that the process, termed fibrillogenesis, is entropy driven. A model based on diffusion limited aggregation was used to investigate the properties of rod self-assembly. This simple model reproduced several experimentally observed features of collagen fibril morphology including a linear mass/unit length profile and a preference for tip growth.


2018 ◽  
Vol 8 (10) ◽  
pp. 1947 ◽  
Author(s):  
Yiming Shen ◽  
Deyi Zhu ◽  
Wenhui Lu ◽  
Bing Liu ◽  
Yanchun Li ◽  
...  

The triple helix structure of collagen can be degraded by collagenase. In this study, we explored how the intrinsic fluorescence of type I collagen was influenced by collagenase I. We found that tyrosine was the main factor that could successfully excite the collagen fluorescence. Initially, self-assembly behavior of collagen resulted in a large amount of tyrosine wrapped with collagen, which decreased the fluorescence intensity of type I collagen. After collagenase cleavage, some wrapped-tyrosine could be exposed and thereby the intrinsic fluorescence intensity of collagen increased. By observation and analysis, the influence of collagenase to intrinsic fluorescence of collagen was investigated and elaborated. Furthermore, collagenase cleavage to the special triple helix structure of collagen would result in a slight improvement of collagen thermostability, which was explained by the increasing amount of terminal peptides. These results are helpful and effective for reaction mechanism research related to collagen, which can be observed by fluorescent technology. Meantime, the reaction behaviors of both collagenase and collagenolytic proteases can also be analyzed by fluorescent technology. In conclusion, this research provides a foundation for the further investigation of collagen reactions in different areas, such as medicine, nutrition, food and agriculture.


Sign in / Sign up

Export Citation Format

Share Document