Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation

1993 ◽  
Vol 39 (4) ◽  
pp. 635-640 ◽  
Author(s):  
J Risteli ◽  
I Elomaa ◽  
S Niemi ◽  
A Novamo ◽  
L Risteli

Abstract We developed a radioimmunoassay (RIA) for the carboxy-terminal telopeptides of type I collagen (ICTP), cross-linked with the helical domain of another type I collagen molecule, after isolation from human femoral bone. The cross-linked peptide was liberated by digesting insoluble, denatured bone collagen either with bacterial collagenase or with trypsin, and purified by two successive reversed-phase separations on HPLC, with monitoring of pyridinoline-specific fluorescence. The purity of the peptide was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its origin in the type I collagen fibers was determined by amino-terminal amino acid sequencing. Polyclonal antibodies and a separation reagent containing second antibody and polyethylene glycol are used in the RIA. An immunologically identical, somewhat larger antigen is present in human serum; its concentration increases in multiple myeloma and in rheumatoid arthritis. The ICTP antigen seems to be cleared from the circulation by the kidneys, because glomerular filtration rates that are two-thirds of normal or less are associated with increased circulating ICTP concentrations. The CVs of the method are between 3% and 8% for a wide range of concentrations. The analysis of 40 serum samples can be completed in 4 h.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomomi Nakamura ◽  
Motozo Yamashita ◽  
Kuniko Ikegami ◽  
Mio Suzuki ◽  
Manabu Yanagita ◽  
...  

AbstractAutophagy is a lysosomal protein degradation system in which the cell self-digests its intracellular protein components and organelles. Defects in autophagy contribute to the pathogenesis of age-related chronic diseases, such as myocardial infarction and rheumatoid arthritis, through defects in the extracellular matrix (ECM). However, little is known about autophagy in periodontal diseases characterised by the breakdown of periodontal tissue. Tooth-supportive periodontal ligament (PDL) tissue contains PDL cells that produce various ECM proteins such as collagen to maintain homeostasis in periodontal tissue. In this study, we aimed to clarify the physiological role of autophagy in periodontal tissue. We found that autophagy regulated type I collagen synthesis by elimination of misfolded proteins in human PDL (HPDL) cells. Inhibition of autophagy by E-64d and pepstatin A (PSA) or siATG5 treatment suppressed collagen production in HPDL cells at mRNA and protein levels. Immunoelectron microscopy revealed collagen fragments in autolysosomes. Accumulation of misfolded collagen in HPDL cells was confirmed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. E-64d and PSA treatment suppressed and rapamycin treatment accelerated the hard tissue-forming ability of HPDL cells. Our findings suggest that autophagy is a crucial regulatory process that facilitates type I collagen synthesis and partly regulates osteoblastic differentiation of PDL cells.


1990 ◽  
Vol 95 (4) ◽  
pp. 649-657 ◽  
Author(s):  
D.E. Birk ◽  
J.M. Fitch ◽  
J.P. Babiarz ◽  
K.J. Doane ◽  
T.F. Linsenmayer

The small-diameter fibrils of the chick corneal stroma are heterotypic, composed of both collagen types I and V. This tissue has a high concentration of type V collagen relative to other type I-containing tissues with larger-diameter fibrils, suggesting that heterotypic interactions may have a regulatory role in the control of fibril diameter. The interactions of collagen types I and V were studied using an in vitro self-assembly system. Collagens were purified from lathyritic chick embryos in the presence of protease inhibitors. The type V collagen preparations contained higher molecular weight forms of the alpha 1(V) and alpha 2(V) chains constituting 60–70% of the total. Rotary-shadow electron micrographs showed a persistence of a small, pepsin-sensitive terminal region in an amount consistent with that seen by electrophoresis. In vitro, this purified type V collagen formed thin fibrils with no apparent periodicity, while type I collagen fibrils had a broad distribution of large diameters. However, when type I collagen was mixed with increasing amounts of type V collagen a progressive and significant decrease in both the mean fibril diameter and the variance was observed for D periodic fibrils. The amino-terminal domain of the type V collagen molecule was required for this regulatory effect and in its absence little diameter reducing activity was observed. Electron microscopy using collagen type-specific monoclonal antibodies demonstrated that the fibrils formed were heterotypic, containing both collagen types I and V. These data indicate that the interaction of type V with type I collagen is one mechanism modulating fibril diameter and is at least partially responsible for the regulation of collagen fibril formation.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 358 ◽  
Author(s):  
Haiyan Ju ◽  
Xiuying Liu ◽  
Gang Zhang ◽  
Dezheng Liu ◽  
Yongsheng Yang

Native collagen fibrils (CF) were successfully extracted from bovine tendons using two different methods: modified acid-solubilized extraction for A-CF and pepsin-aided method for P-CF. The yields of A-CF and P-CF were up to 64.91% (±1.07% SD) and 56.78% (±1.22% SD) (dry weight basis), respectively. The analyses of both amino acid composition and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that A-CF and P-CF were type I collagen fibrils. Both A-CF and P-CF retained the intact crystallinity and integrity of type I collagen’s natural structure by FTIR spectra, circular dichroism spectroscopy (CD) and X-ray diffraction detection. The aggregation structures of A-CF and P-CF were displayed by UV–Vis. However, A-CF showed more intact aggregation structure than P-CF. Microstructure and D-periodicities of A-CF and P-CF were observed (SEM and TEM). The diameters of A-CF and P-CF are about 386 and 282 nm, respectively. Although both A-CF and P-CF were theoretically concordant with the Schmitt hypothesis, A-CF was of evener thickness and higher integrity in terms of aggregation structure than P-CF. Modified acid-solubilized method provides a potential non-enzyme alternative to extract native collagen fibrils with uniform thickness and integral aggregation structure.


Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 178 ◽  
Author(s):  
Baosheng Ge ◽  
Haonan Wang ◽  
Jie Li ◽  
Hengheng Liu ◽  
Yonghao Yin ◽  
...  

Collagen plays an important role in the formation of extracellular matrix (ECM) and development/migration of cells and tissues. Here we report the preparation of collagen and collagen hydrogel from the skin of tilapia and an evaluation of their potential as a wound dressing for the treatment of refractory wounds. The acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) were extracted and characterized using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), differential scanning calorimetry (DSC), circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) analysis. Both ASC and PSC belong to type I collagen and have a complete triple helix structure, but PSC shows lower molecular weight and thermal stability, and has the inherent low antigenicity. Therefore, PSC was selected to prepare biomedical hydrogels using its self-aggregating properties. Rheological characterization showed that the mechanical strength of the hydrogels increased as the PSC content increased. Scanning electron microscope (SEM) analysis indicated that hydrogels could form a regular network structure at a suitable PSC content. Cytotoxicity experiments confirmed that hydrogels with different PSC content showed no significant toxicity to fibroblasts. Skin repair experiments and pathological analysis showed that the collagen hydrogels wound dressing could significantly accelerate the healing of deep second-degree burn wounds and the generation of new skin appendages, which can be used for treatment of various refractory wounds.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 597
Author(s):  
Junde Chen ◽  
Guangyu Wang ◽  
Yushuang Li

Marine collagen is gaining vast interest because of its high biocompatibility and lack of religious and social restrictions compared with collagen from terrestrial sources. In this study, lizardfish (Synodus macrops) scales were used to isolate acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC). Both ASC and PSC were identified as type I collagen with intact triple-helix structures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and spectroscopy. The ASC and PSC had high amino acids of 237 residues/1000 residues and 236 residues/1000 residues, respectively. Thus, the maximum transition temperature (Tmax) of ASC (43.2 °C) was higher than that of PSC (42.5 °C). Interestingly, the Tmax of both ASC and PSC was higher than that of rat tail collagen (39.4 °C) and calf skin collagen (35.0 °C), the terrestrial collagen. Solubility tests showed that both ASC and PSC exhibited high solubility in the acidic pH ranges. ASC was less susceptible to the “salting out” effect compared with PSC. Both collagen types were nontoxic to HaCaT and MC3T3-E1 cells, and ASC was associated with a higher cell viability than PSC. These results indicated that ASC from lizardfish scales could be an alternative to terrestrial sources of collagen, with potential for biomedical applications.


1990 ◽  
Vol 36 (7) ◽  
pp. 1328-1332 ◽  
Author(s):  
J Melkko ◽  
S Niemi ◽  
L Risteli ◽  
J Risteli

Abstract Type I collagen is the most abundant collagen type in soft tissues and the only type found in mineralized bone. We established a rapid equilibrium radioimmunoassay for the carboxyterminal propeptide of human type I procollagen (PICP), to be used as an indicator of the synthesis of type I collagen. We isolated type I procollagen from the medium of primary cultures of human skin fibroblasts, digested the protein with highly purified bacterial collagenase, and purified PICP by lectin-affinity chromatography, gel filtration, and ion-exchange separation on HPLC. The purity of the protein was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by N-terminal amino acid sequencing of its component chains. The final radioimmunoassay was established with polyclonal rabbit antibodies. Material antigenically related to PICP is readily detected in human serum. There is only one form of the serum antigen, its molecular size and affinity to the antibodies being similar to those of the isolated propeptide. Intra- and interassay CVs are 3% and 5%, respectively. Preliminary reference intervals for healthy adults (18 to 61 years of age) are 38-202 micrograms/L for men and 50-170 micrograms/L for women: in men the concentration is inversely related to age. The serum antigen is stable during storage and after repeated thawing.


1980 ◽  
Vol 189 (1) ◽  
pp. 111-124 ◽  
Author(s):  
N D Light ◽  
A J Bailey

Polymeric cross-linked C-terminal peptide material (poly-alpha 1CB6) from mature bovine tendon type-I collagen was prepared and purified by a modification of the method previously described [Light & Bailey (1980) Biochem. J. 185, 373-381]. Poly-alpha 1CB6 was shown to exhibit concentration-dependent aggregation effects on gel filtration due to interaction with a filtration medium. The material had an amino acid content that was very similar to a mixture of alpha 1CB6 and alpha 1CB5. The material was shown to be polydisperse with a mol.wt. range of 50 000-350 000, but chromatographic fractions were relatively homogeneous over this molecular weight range with respect to amino-acid composition. The heterogeneity of the material was not due to incomplete CNBr peptide cleavage, as poly-alpha 1CB6 did not contain detectable quantities of methionine. The material showed no discrete bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis but gave a constant blue stain throughout the molecular weight range described above. Lipid analysis showed that the partially purified material contained elevated levels of stearate when compared to the crude CNBr-digested starting material. This may indicate the specific association of a stearic-acid-rich lipid with the peptide material. On carbohydrate analysis poly-alpha 1CB6 was shown to contain only galactose and glucose at levels of 0.72 and 0.28% respectively. The carbohydrate and amino acid analyses indicated that (alpha 1CB6)2-(alpha 1CB5)1 may be the basic cross-linked structural unit of poly-alpha 1CB6)2-(alpha 1CB5)1 units, although the carbohydrate analysis indicated that the higher molecular weight oligomers may be enriched in alpha 1CB6.


2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Danilo Alessio Di Stefano ◽  
Terry Zaniol ◽  
Lorenzo Cinci ◽  
Laura Pieri

Enzyme-deantigenic equine bone (EDEB) and anorganic bovine bone (ABB) are two xenografts made non-antigenic through different processing methods. This study aimed to characterize them for the presence of native bone collagen and other proteins and to compare their histomorphometric outcome when they were used to graft post-extractive sockets. The records of 46 patients treated with EDEB (n = 22) or ABB (n = 24) and followed-up for at least four months after delayed implant placement, were retrospectively collected. Samples of EDEB and ABB were analyzed using Attenuated Total Reflection Fourier Transform Infrared and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the presence of collagen and other proteins. For histomorphometric analysis on bone specimens, newly formed bone and residual biomaterial percentages were calculated. Results of the present study show that EDEB contains type I bone collagen in its native conformation, while no proteins were detected in ABB. Grafting EDEB resulted in a significantly greater quantity of newly formed bone and less residual biomaterial. Our findings suggest that the manufacturing process can greatly affect the graft behavior and a process preserving collagen in its native form may favor bone tissue regeneration.


2020 ◽  
Vol 106 (1) ◽  
pp. e288-e299
Author(s):  
Anke Hannemann ◽  
Matthias Nauck ◽  
Henry Völzke ◽  
Heike Weidner ◽  
Uwe Platzbecker ◽  
...  

Abstract Context Osteoporosis and anemia are among the most common diseases in the aging population with an increasing prevalence worldwide. Objective As the bone-derived hormone fibroblast growth factor 23 (FGF-23) was recently reported to regulate erythropoiesis, we examined age-related associations between hemoglobin levels and bone quality, bone turnover, and FGF-23 concentrations. Design We used data from more than 5000 adult subjects who participated in the population-based cohorts of the Study of Health in Pomerania (SHIP and SHIP-Trend). Bone quality was assessed by quantitative ultrasound at the heel, bone turnover by measurement of carboxy-terminal telopeptide of type I collagen (CTX), and intact amino-terminal propeptide of type I procollagen (P1NP) serum concentrations, respectively. Anemia was defined as hemoglobin <13 g/dL in men and <12 g/dL in women. Carboxy-terminal FGF-23 levels were measured in plasma in a subset of 852 subjects. Results Anemic subjects had poorer bone quality, higher fracture risk, and lower serum levels of P1NP than nonanemic individuals. Linear regression models revealed positive associations between hemoglobin and bone quality in subjects aged 40 or above and inverse associations with CTX in subjects aged 60 or above. Hemoglobin and FGF-23 concentrations were inversely associated, while FGF-23 was not related to bone quality or turnover. Conclusion Our data corroborate a close link between FGF-23 and anemia, which is related to poor bone quality in elderly people. We observed no direct association of FGF-23 with bone parameters. Further studies are needed clarifying the role of FGF-23 on bone and red blood cell production.


Sign in / Sign up

Export Citation Format

Share Document