Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter

1990 ◽  
Vol 95 (4) ◽  
pp. 649-657 ◽  
Author(s):  
D.E. Birk ◽  
J.M. Fitch ◽  
J.P. Babiarz ◽  
K.J. Doane ◽  
T.F. Linsenmayer

The small-diameter fibrils of the chick corneal stroma are heterotypic, composed of both collagen types I and V. This tissue has a high concentration of type V collagen relative to other type I-containing tissues with larger-diameter fibrils, suggesting that heterotypic interactions may have a regulatory role in the control of fibril diameter. The interactions of collagen types I and V were studied using an in vitro self-assembly system. Collagens were purified from lathyritic chick embryos in the presence of protease inhibitors. The type V collagen preparations contained higher molecular weight forms of the alpha 1(V) and alpha 2(V) chains constituting 60–70% of the total. Rotary-shadow electron micrographs showed a persistence of a small, pepsin-sensitive terminal region in an amount consistent with that seen by electrophoresis. In vitro, this purified type V collagen formed thin fibrils with no apparent periodicity, while type I collagen fibrils had a broad distribution of large diameters. However, when type I collagen was mixed with increasing amounts of type V collagen a progressive and significant decrease in both the mean fibril diameter and the variance was observed for D periodic fibrils. The amino-terminal domain of the type V collagen molecule was required for this regulatory effect and in its absence little diameter reducing activity was observed. Electron microscopy using collagen type-specific monoclonal antibodies demonstrated that the fibrils formed were heterotypic, containing both collagen types I and V. These data indicate that the interaction of type V with type I collagen is one mechanism modulating fibril diameter and is at least partially responsible for the regulation of collagen fibril formation.

Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


1989 ◽  
Vol 94 (2) ◽  
pp. 371-379
Author(s):  
J.S. McLaughlin ◽  
T.F. Linsenmayer ◽  
D.E. Birk

Chick embryo corneal fibroblasts were grown in culture to study the processes whereby fibroblasts regulate the deposition and organization of the collagenous, secondary stroma. The effects of an existing type I collagen substratum, cell density, and serum concentration on type V collagen synthesis were investigated. Type V collagen represented approximately 20% of the total fibrillar collagen synthesized, regardless of whether the cells were subcultured, grown on untreated or collagen-coated plastic, grown under confluent or subconfluent conditions, or grown in the presence of low (0.1%) or high (10.0%) serum concentrations. The synthesis of type V collagen remained constant at 20% of the total collagen when cells were grown in 1.0% serum, even though total collagen synthesis increased nearly twofold when compared to total synthesis in 0.1% or 10.0% serum. Immunocytochemistry with anti-collagen, type-specific monoclonal antibodies revealed a homogeneous population of cells synthesizing types I and V collagen. The fibrils deposited by cells grown in a three-dimensional collagen matrix contained a helical epitope on the type V molecule that was inaccessible unless the fibrillar structure was disrupted, mimicking the situation in situ. The production in vitro of heterotypic fibrils, with a constant I/V ratio and molecular packing mimicking the natural stroma, offers opportunities for studying in more detail this important process, which is essential for optical transparency.


1996 ◽  
Vol 135 (5) ◽  
pp. 1415-1426 ◽  
Author(s):  
J K Marchant ◽  
R A Hahn ◽  
T F Linsenmayer ◽  
D E Birk

A number of factors have been implicated in the regulation of tissue-specific collagen fibril diameter. Previous data suggest that assembly of heterotypic fibrils composed of two different fibrillar collagens represents a general mechanism regulating fibril diameter. Specifically, we hypothesize that type V collagen is required for the assembly of the small diameter fibrils observed in the cornea. To test this, we used a dominant-negative retroviral strategy to decrease the levels of type V collagen secreted by chicken corneal fibroblasts. The chicken alpha 1(V) collagen gene was cloned, and retroviral vectors that expressed a polycistronic mRNA encoding a truncated alpha 1(V) minigene and the reporter gene LacZ were constructed. The efficiency of viral infection was 30-40%, as determined by assaying beta-galactosidase activity. To assess the expression from the recombinant provirus, Northern analysis was performed and indicated that infected fibroblasts expressed high steady-state levels of retroviral mRNA. Infected cells synthesized the truncated alpha 1(V) protein, and this was detectable only intracellularly, in a distribution that colocalized with lysosomes. To assess endogenous alpha 1(V) protein levels, infected cell cultures were assayed, and these consistently demonstrated reductions relative to control virus-infected or uninfected cultures. Analyses of corneal fibril morphology demonstrated that the reduction in type V collagen resulted in the assembly of large-diameter fibrils with a broad size distribution, characteristics similar to fibrils produced in connective tissues with low type V concentrations. Immunoelectron microscopy demonstrated the amino-terminal domain of type V collagen was associated with the small-diameter fibrils, but not the large fibrils. These data indicate that type V collagen levels regulate corneal fibril diameter and that the reduction of type V collagen is sufficient to alter fibril assembly so that abnormally large-diameter fibrils are deposited into the matrix.


1988 ◽  
Vol 106 (3) ◽  
pp. 999-1008 ◽  
Author(s):  
D E Birk ◽  
J M Fitch ◽  
J P Babiarz ◽  
T F Linsenmayer

The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


1982 ◽  
Vol 92 (2) ◽  
pp. 343-349 ◽  
Author(s):  
A Martinez-Hernandez ◽  
S Gay ◽  
E J Miller

Antibodies specific for the alpha 1 (V) chain and native collagen molecules containing the alpha 1 (V) chain have been used in electron immunohistochemical studies of rat kidney to determine the ultrastructural distribution of this class of collagen molecules. In addition, antibodies against type I collagen and whole basement membrane were used as markers for interstitial collagen and authentic basement membranes. Our results indicate that type V collagen is present in the renal interstitium in different forms: in close apposition to interstitial collagen fibers; in the stromal aspect of vascular basement membranes; and as particulate material not bound to other structures. On the basis of these findings, we postulate a binding or connecting function for this collagen type.


1993 ◽  
Vol 39 (4) ◽  
pp. 635-640 ◽  
Author(s):  
J Risteli ◽  
I Elomaa ◽  
S Niemi ◽  
A Novamo ◽  
L Risteli

Abstract We developed a radioimmunoassay (RIA) for the carboxy-terminal telopeptides of type I collagen (ICTP), cross-linked with the helical domain of another type I collagen molecule, after isolation from human femoral bone. The cross-linked peptide was liberated by digesting insoluble, denatured bone collagen either with bacterial collagenase or with trypsin, and purified by two successive reversed-phase separations on HPLC, with monitoring of pyridinoline-specific fluorescence. The purity of the peptide was verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its origin in the type I collagen fibers was determined by amino-terminal amino acid sequencing. Polyclonal antibodies and a separation reagent containing second antibody and polyethylene glycol are used in the RIA. An immunologically identical, somewhat larger antigen is present in human serum; its concentration increases in multiple myeloma and in rheumatoid arthritis. The ICTP antigen seems to be cleared from the circulation by the kidneys, because glomerular filtration rates that are two-thirds of normal or less are associated with increased circulating ICTP concentrations. The CVs of the method are between 3% and 8% for a wide range of concentrations. The analysis of 40 serum samples can be completed in 4 h.


Sign in / Sign up

Export Citation Format

Share Document