Impact on Laminated Composites: Recent Advances

1994 ◽  
Vol 47 (11) ◽  
pp. 517-544 ◽  
Author(s):  
Serge Abrate

Impact damage in structures made out of composite materials is a major concern since such damage can be introduced during the life of the structure, and its mechanical properties can be drastically reduced as a result. In a previous review of the literature on impact on composite materials, this author considered 285 published before 1989. In this article over 300 articles most of which appeared after 1989 are reviewed. These figures indicate that this is a very active area of research, and the present paper seeks to present a comprehensive view of the latest developments. Taken together, these two reviews present a comprehensive view of the state of knowledge in the area. Most the current research effort is focused on low velocity impact damage and, in particular, the damage predictions and the evaluation and prediction of residual properties of damaged laminates. A significant number of papers deal with ballistic impacts on laminated composites and the use of composite materials in designing light armor.

2005 ◽  
Vol 19 (4) ◽  
pp. 947-957 ◽  
Author(s):  
Jounghwan Lee ◽  
Changduk Kong ◽  
Costas Soutis

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Mubarak Ali ◽  
S. C. Joshi ◽  
Mohamed Thariq Hameed Sultan

Fibre reinforced polymer laminated composites are susceptible to impact damage during manufacture, normal operation, maintenance, and/or other stages of their life cycle. Initiation and growth of such damage lead to dramatic loss in the structural integrity and strength of laminates. This damage is generally difficult to detect and repair. This makes it important to find a preventive solution. There has been abundance of research dealing with the impact damage evolution of composite laminates and methods to mitigate and alleviate the damage initiation and growth. This article presents a comprehensive review of different strategies dealing with development of new composite materials investigated by several research groups that can be used to mitigate the low velocity impact damage in laminated composites. Hybrid composites, composites with tough thermoplastic resins, modified matrices, surface modification of fibres, translaminar reinforcements, and interlaminar modifications such as interleaving, short fibre reinforcement, and particle based interlayer are discussed in this article. A critical evaluation of various techniques capable of enhancing impact performance of laminated composites and future directions in this research field are presented in this article.


2019 ◽  
Vol 11 (5) ◽  
pp. 670-685 ◽  
Author(s):  
Konstantinos Stamoulis ◽  
Stelios K. Georgantzinos ◽  
G.I. Giannopoulos

Purpose The present study deals with the numerical modeling of the low-velocity impact damage of laminated composites which have increasingly important applications in aerospace primary structures. Such damage, generated by various sources during ground handling, substantially reduces the mechanical residual performance and the safe-service life. The purpose of this paper is to present and validate a computationally efficient approach in order to explore the effect of critical parameters on the impact damage characteristics. Design/methodology/approach Numerical modeling is considered as one of the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intralaminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS® programme. Findings The employed modeling approach is validated using corresponding numerical data found in the literature and the presented results show a reasonable correlation to the available literature data. It is demonstrated that the current model can be used to capture the force-time response as well as damage parameter maps showing the intralaminar damage evolution for different impact cases with respect to the physical boundary conditions and a range of impact energies. Originality/value Low-velocity impact damage of laminated composites is still not well understood due to the complexity and non-linearity of the damage zone. The presented model is used to predict the force-time response which is considered as one of the most important parameters influencing the structural integrity. Furthermore, it is used for capturing the damage shape evolution, exhibiting a high degree of capability as a damage assessment computational tool.


2011 ◽  
Vol 110-116 ◽  
pp. 632-636
Author(s):  
K. Pazhanivel ◽  
G.B. Bhaskar ◽  
S. Arunachalam ◽  
V. Hariharan ◽  
A. Elayaperumal

Composite materials have a number of properties that make them attractive for use in aerospace applications. The impact behavior of fiber reinforced composite materials is much more complex than conventional metallic structures due to a number of different failure modes on the inter laminar and intra laminar level. The aim of this study is to investigate the effects of temperature and thermal residual stresses on the impact behavior and damage of glass/epoxy laminated composites. To this end, thermal stress analyses of the laminates with lay-ups [90/0/0/90] s, [90/0/45/45] s, [0/90/45/-45] s, [45/0/-45/90] s are carried out under different temperatures by using ANSYS software. Also, the impact analysis on the laminated composites was performed at the different range of impact energies under different temperatures. The specific energy values and impact parameters were obtained and compared for each type of specimens and temperatures.


2015 ◽  
Vol 38 (7) ◽  
pp. 1280-1291 ◽  
Author(s):  
Xiaochen Sun ◽  
Peng Qu ◽  
Gang Liu ◽  
Xiaosu Yi ◽  
Hao Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document