The Contribution of the Cruciate Ligaments to the Load-Displacement Characteristics of the Human Knee Joint

1980 ◽  
Vol 102 (4) ◽  
pp. 277-283 ◽  
Author(s):  
R. L. Piziali ◽  
J. Rastegar ◽  
D. A. Nagel ◽  
D. J. Schurman

Human knee specimens were subjected to anterior-posterior, medial-lateral, varus-valgus, and torsional displacement tests. Loads were recorded for the intact joint and for the joint with all soft tissues cut except for the cruciate ligaments. The effect of condylar interference was determined for anterior-posterior, medial-lateral, and torsional displacements. The variation in load with flexion angle was considerable for medial-lateral (0–90-deg flexion) displacements, and less for varus-valgus (0–45-deg flexion) displacements. The cruciates were found to carry almost the entire anterior-posterior load; they carried a significant percentage of the medial-lateral load which varied considerably with flexion angle. A small, but not insignificant percentage of the varus-valgus load was carried by the cruciates and the variations with flexion angle were small. In torsion, the cruciates resisted only internal rotation. In the tested displacement ranges, condylar interference had a small effect on the medial-lateral load but did not affect anterior-posterior or torsional loads.

Author(s):  
Daniel Alejandro Ponce-Saldias ◽  
◽  
Daniel Martins ◽  
Carlos Rodrigo de Mello-Roesler ◽  
Otavio Teixeira-Pinto ◽  
...  

1970 ◽  
Vol 92 (1) ◽  
pp. 131-136 ◽  
Author(s):  
R. G. Edwards ◽  
J. F. Lafferty ◽  
K. O. Lange

The kinematics of the human knee joint and the strain of the ligaments as a function of flexion are determined analytically and experimentally. The experimental results were obtained in 13 tests of four knee joints in which the strain in each of the two collateral and two cruciate ligaments was measured with mercury strain gauges while the tibia was rotated through a flexion angle of 130 deg. The values of the relative ligament strain obtained from the analytical model are in good agreement with the experimental results.


Author(s):  
Ratnakar Ambade ◽  
Ankit Jaiswal

Background: It is well understood that distal femoral and proximal tibia scale is lower in case of the Asian than that of their western counterparts. Because of the Asian population's comparatively smaller structure and stature, many surgeons claim that imported implants may not be well fitted for Asian origin patients, mainly based on Western morphometry. It is very likely that an overweight section will be used in many Asian centres in most operations, resulting in low results of the procedure of the implant. For joint substitution of distal femur, careful positioning of fitted implants as well as balancing of underlying soft tissues is important. It is also important to use incredibly complex surgical procedures. To retain its usual functional motion spectrum, use of a suitable femoral part dimension is necessary. Furthermore, owing to a discrepancy between the size of the prosthesis and the bone, there could be a host of serious issues. Objectives: To calculate the anthropometric distal femur parameter and determine the distal femur variations on the right and left side of the morph metric measurement and to evaluate dimension of current TKA as related to Indian population. Methodology: This study included visiting the out patients Department of Orthopedics, at AVBRH in the age group 30-50 year during the period of June-2020 to April-2023 with sample size of 50 patients. Detailed history and clinical review will be taken, including age, sex, socio-economic background, type of employment. In all patients involved in the study in Orthopedic OPD, thorough radiological assessment of all the knee joints will be performed. The radiological test and various anthropometrics will include knee joint Simple X-ray and CT-Scan. Expected Results: We expect that from our results, anthropometric measurements of Indian population may differ from other literatures.


1998 ◽  
Vol 13 (8) ◽  
pp. 625-633 ◽  
Author(s):  
M.Z. Bendjaballah ◽  
A. Shirazi-Adl ◽  
D.J. Zukor

2017 ◽  
Vol 56 (7) ◽  
pp. 1189-1199 ◽  
Author(s):  
Hamid Naghibi Beidokhti ◽  
Dennis Janssen ◽  
Sebastiaan van de Groes ◽  
Nico Verdonschot

Author(s):  
Yuhua Song ◽  
Richard E. Debski ◽  
Jorge Gil ◽  
Savio L.-Y. Woo

A 3-D finite element (FE) model of the knee is needed to more accurately analyze the kinematics of a knee joint as well as the function of various soft tissues such as ligaments. The data obtained can provide a better understanding of mechanisms of injury and offer valuable information for ligament reconstruction and rehabilitation protocols. The objective of this study was to develop a 3-D non-linear FE model of a human knee and determine its kinematics and the force and stress distributions within the anterior cruciate ligament (ACL) in response to anterior tibial loads at full extension. This model was validated by comparing the computed results to data obtained experimentally by a Robotic/UFS testing system [1].


Author(s):  
Yaghoub Dabiri ◽  
LePing Li

The mechanical response of the knee joint has been simulated using finite element methods with elastic material models [1–4]. Fluid pressurization in articular cartilage and menisci has not been considered in the anatomically accurate joint modeling until recently [5–7]. We have recently considered stress relaxation and creep behavior of human knees. The objective of the present study was to investigate the mechanics of the femoral cartilage under cyclical knee compression. We are particularly interested in the determination of loading versus unloading patterns for the fluid pressure and flow, as well as the influence of the loading frequency on the fluid pressurization.


2021 ◽  
Vol 11 (6) ◽  
pp. 2541
Author(s):  
Kheireddine Zehouani ◽  
Oldal István

The human knee joint usually suffers progressive deterioration with time. The conventional cure of this issue is to replace it with an alternate knee by applying the prosthesis implant. The reason is that the process causes the abrasion of the different materials rather than just sliding or rolling. This study aims to develop the numerical measurement of the knee prosthesis’s geometry, which fulfils the mechanical requirements of the human knee. The MSC.ADAMS programme was applied to demonstrate the movement of the human knee joint in terms of rotation and flexion. The changes between the condyles of the developed multibody of the prosthesis related to the flexion angle ranging from 20–120° were investigated and presented. The boundary conditions were determined, and simulations performed using the ADAM’s programme. An average value of 0.7 was reached for the slip ration, with the maximum getting up to 0.79. An angle between 110–120° for the flexion angle was obtained. It can be said that the application of the multibody model saves time as there is no involvement of the tibia and the femur as required for the knee prosthesis. More importantly, as the application of the test machine is omitted in our process, our model’s approximations to a human knee are carried out directly. Without cost, several measurements for the knee prosthesis could be made and repaired. The study results provide the necessary insight for future tests regarding the movement of the knee joint.


Sign in / Sign up

Export Citation Format

Share Document