scholarly journals The peripheral soft tissues should not be ignored in the finite element models of the human knee joint

2017 ◽  
Vol 56 (7) ◽  
pp. 1189-1199 ◽  
Author(s):  
Hamid Naghibi Beidokhti ◽  
Dennis Janssen ◽  
Sebastiaan van de Groes ◽  
Nico Verdonschot
Author(s):  
Yuhua Song ◽  
Richard E. Debski ◽  
Jorge Gil ◽  
Savio L.-Y. Woo

A 3-D finite element (FE) model of the knee is needed to more accurately analyze the kinematics of a knee joint as well as the function of various soft tissues such as ligaments. The data obtained can provide a better understanding of mechanisms of injury and offer valuable information for ligament reconstruction and rehabilitation protocols. The objective of this study was to develop a 3-D non-linear FE model of a human knee and determine its kinematics and the force and stress distributions within the anterior cruciate ligament (ACL) in response to anterior tibial loads at full extension. This model was validated by comparing the computed results to data obtained experimentally by a Robotic/UFS testing system [1].


2017 ◽  
Vol 65 ◽  
pp. 1-11 ◽  
Author(s):  
Hamid Naghibi Beidokhti ◽  
Dennis Janssen ◽  
Sebastiaan van de Groes ◽  
Javad Hazrati ◽  
Ton Van den Boogaard ◽  
...  

Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
George Stefanoudakis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
...  

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load bearing structures is of help when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament in the knee connects the femur to the tibia and is often torn during a sudden twisting motion, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint in typical everyday activities and evaluate the differences in its response for three different states, intact, injured and reconstructed knee. Three equivalent finite element models were developed. For the reconstructed model a novel repair device developed and patented by the authors was employed. For the verification of the developed models, static load cases presented in a previous modeling work were used. Mechanical stresses calculated for the load cases studied, were very close to results presented in previous experimentally verified work, in both load distribution and maximum calculated load values.


2000 ◽  
Author(s):  
Tammy Haut Donahue ◽  
Maury L. Hull ◽  
Mark M. Rashid ◽  
Christopher R. Jacobs

Abstract A finite element model of the tibio-femoral joint in the human knee was created using a new technique for developing accurate solid models of soft tissues (i.e. cartilage and menisci). The model was used to demonstrate that constraining rotational degrees of freedom other than flexion/extension when the joint is loaded in compression markedly affects the load distribution between the medial and lateral sides of the joint. The model also was used to validate the assumption that the bones can be treated as rigid.


1980 ◽  
Vol 102 (4) ◽  
pp. 277-283 ◽  
Author(s):  
R. L. Piziali ◽  
J. Rastegar ◽  
D. A. Nagel ◽  
D. J. Schurman

Human knee specimens were subjected to anterior-posterior, medial-lateral, varus-valgus, and torsional displacement tests. Loads were recorded for the intact joint and for the joint with all soft tissues cut except for the cruciate ligaments. The effect of condylar interference was determined for anterior-posterior, medial-lateral, and torsional displacements. The variation in load with flexion angle was considerable for medial-lateral (0–90-deg flexion) displacements, and less for varus-valgus (0–45-deg flexion) displacements. The cruciates were found to carry almost the entire anterior-posterior load; they carried a significant percentage of the medial-lateral load which varied considerably with flexion angle. A small, but not insignificant percentage of the varus-valgus load was carried by the cruciates and the variations with flexion angle were small. In torsion, the cruciates resisted only internal rotation. In the tested displacement ranges, condylar interference had a small effect on the medial-lateral load but did not affect anterior-posterior or torsional loads.


1997 ◽  
Vol 12 (3) ◽  
pp. 139-148 ◽  
Author(s):  
MZ Bendjaballah ◽  
A Shirazi-Adl ◽  
DJ Zukor

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Duraisamy Shriram ◽  
Gideon Praveen Kumar ◽  
Fangsen Cui ◽  
Yee Han Dave Lee ◽  
Karupppasamy Subburaj

2017 ◽  
Author(s):  
Abby E Peters ◽  
Riaz Akhtar ◽  
Eithne J Comerford ◽  
Karl T Bates

Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis. As a result significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing material property data for human knee joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model whole-knee joint mechanical behaviour through finite element modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fueled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result there now exists an extremely broad range of published values for human knee tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and osteoarthritis is limited. It is therefore currently challenging to construct finite element models of the knee that are truly representative of a specific age or disease-state. Consequently, recent whole-joint finite element models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model 1) young and old and 2) healthy and osteoarthritis human knee joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which finite element models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.


Sign in / Sign up

Export Citation Format

Share Document