Frequency Response Analysis of an Ocean Wave Energy Converter

1983 ◽  
Vol 105 (1) ◽  
pp. 30-38 ◽  
Author(s):  
M. Masubuchi ◽  
R. Kawatani

A theoretical analysis is presented for the dynamic behavior and energy conversion efficiency of a wave energy converter which is oscillating and absorbing power in an incident sinusoidal wave train. The energy converter consists of two floating bodies which have different configuration and are connected by a rigid link. Basic equations governing the floating bodies contained in the energy converter are obtained by assuming two dimensional motions and by considering the interactions between the two bodies and hydrodynamic and damping forces, and they have been solved numerically by using Lewis form as the configuration of the floating bodies. Energy absorption is assumed to be proportional to the square of the relative velocity between the oscillating body and the connecting link. It is shown that nearly 100 percent of wave energy is converted into mechanical energy in a wide frequency band.

2021 ◽  
Vol 13 (17) ◽  
pp. 9803
Author(s):  
Ji Woo Nam ◽  
Yong Jun Sung ◽  
Seong Wook Cho

The InWave wave energy converter (WEC), which is three-tether WEC type, absorbs wave energy via moored cylindrical buoys with three ropes connected to a terrestrial power take-off (PTO) through a subsea pulley. In this study, a simulation study was conducted to select a suitable PTO when designing a three-tether WEC. The mechanical PTO transfers energy from the buoy to the generator using a gearbox, whereas the hydraulic PTO uses a hydraulic pump, an accumulator, and a hydraulic motor to convert mechanical energy into electrical energy. The hydraulic PTO has a lower energy conversion efficiency than that of the mechanical PTO owing to losses resulting from pipe friction and the individual efficiencies of the hydraulic pumps and motors. However, the efficiencies mentioned above are not the efficiency of the whole system. The efficiency of the whole system should be analyzed considering the tension of the rope and the efficiency of the generator. In this study, the energy conversion efficiencies of the InWave WEC installed the mechanical and hydraulic PTO devices are compared, and their behaviors are analyzed through numerical simulations. The mechanics of mechanical and hydraulic PTO applied to InWave are mathematically expressed, and the issues of the elements constituting the PTO are explained. Finally, factors to consider for PTO selection are presented.


Author(s):  
Yutaro Sasahara ◽  
Mitsuhiro Masuda ◽  
Kiyokazu Minami

When concrete examination towards utilization is needed, it is necessary to estimate the safety and the performance of a floating Oscillation Water Column (OWC)-type wave energy converter under abnormal oceanographic phenomenon such as large waves, wave impact force, deck wetness and complex motion of mooring system. Therefore, to choose a proper numerical method is important. This present paper describes a fundamental study about estimation of safety and performance of floating OWC-type wave energy converter using the two-phase flow MPS method. In this research, firstly, new algorithm is installed in order to solve problems of the two-phase flow MPS method. Secondly, applicability to an response analysis of a wharf installation type OWC-WEC of the improved MPS method is examined by wave pressure acting to the OWC-WEC and response in the air chamber of the OWC-WEC.


Author(s):  
Eirini Katsidoniotaki ◽  
Edward Ransley ◽  
Scott Brown ◽  
Johannes Palm ◽  
Jens Engström ◽  
...  

Abstract Accurate modeling and prediction of extreme loads for survivability is of crucial importance if wave energy is to become commercially viable. The fundamental differences in scale and dynamics from traditional offshore structures, as well as the fact that wave energy has not converged around one or a few technologies, implies that it is still an open question how the extreme loads should be modeled. In recent years, several methods to model wave energy converters in extreme waves have been developed, but it is not yet clear how the different methods compare. The purpose of this work is the comparison of two widely used approaches when studying the response of a point-absorber wave energy converter in extreme waves, using the open-source CFD software OpenFOAM. The equivalent design-waves are generated both as equivalent regular waves and as focused waves defined using NewWave theory. Our results show that the different extreme wave modeling methods produce different dynamics and extreme forces acting on the system. It is concluded that for the investigation of point-absorber response in extreme wave conditions, the wave train dynamics and the motion history of the buoy are of high importance for the resulting buoy response and mooring forces.


2021 ◽  
Vol 321 ◽  
pp. 03003
Author(s):  
Devesh Singh ◽  
Anoop Singh ◽  
Akshoy Ranjan Paul ◽  
Abdus Samad

The paper aims to design and simulation of a wave energy harvesting system commonly known as point absorber for Ennore port located in the coastal area of Chennai, India. The geographical condition of India, which is surrounded by the three sides with seas and ocean, has enormous opportunity for power production through wave energy harvesting system. The wave energy converter device is a two-body floating system and its both parts are connected by power take-off unit which acts as spring mass damper system. In this paper, the hydrodynamic diffraction, stability analysis, frequency, and time response analysis is carried out on ansys-aqwa. The numerical results are compared with the results obtained from the similar experiments for validation of CFD solver. Effects of the properties featuring wave characteristics including wave height and wave period of Ennore port on the energy conversion, Froude-Krylov and diffraction force, response amplitude operator (RAO) are studied. Based on the study, float diameter, draft, geometry, and varying damping coefficient for power generation are optimized. Finally, the optimally designed point absorber is simulated as per Indian ocean energy harvesting standard and mass of the system, heave dimension, diffraction forces, and pressure variations are computed.


2020 ◽  
Vol 146 ◽  
pp. 2499-2516 ◽  
Author(s):  
Christian Windt ◽  
Josh Davidson ◽  
Edward J. Ransley ◽  
Deborah Greaves ◽  
Morten Jakobsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document