Impedance Control: An Approach to Manipulation: Part II—Implementation

1985 ◽  
Vol 107 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Neville Hogan

This three-part paper presents an approach to the control of dynamic interaction between a manipulator and its environment. Part I presented the theoretical reasoning behind impedance control. In Part II the implementation of impedance control is considered. A feedback control algorithm for imposing a desired cartesian impedance on the end-point of a nonlinear manipulator is presented. This algorithm completely eliminates the need to solve the “inverse kinematics problem” in robot motion control. The modulation of end-point impedance without using feedback control is also considered, and it is shown that apparently “redundant” actuators and degrees of freedom such as exist in the primate musculoskeletal system may be used to modulate end-point impedance and may play an essential functional role in the control of dynamic interaction.

1985 ◽  
Vol 107 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Neville Hogan

This three-part paper presents a unified approach to the control of a manipulator applicable to free motions, kinematically constrained motions, and dynamic interaction between the manipulator and its environment. In Part I the approach was developed from a consideration of the fundamental mechanics of manipulation. Part II presented techniques for implementing a desired manipulator impedance. In Part III a technique for choosing the impedance appropriate to a given application using optimization theory is presented. Based on a simplified analysis it is shown that if the task objective is to tradeoff interface forces and motion errors, the manipulator impedance should be proportional to the environmental admittance. An application of impedance control to unconstrained motion is presented. The superposition properties of nonlinear impedances are used to develop a real-time feedback control algorithm which permits a manipulator to avoid unpredictably moving objects without explicit path planning.


2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.


Robotica ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 263-267 ◽  
Author(s):  
Ronald L. Huston ◽  
Timothy P. King

SUMMARYThe dynamics of “simple, redundant robots” are developed. A “redundant” robot is a robot whose degrees of freedom are greater than those needed to perform a given kinetmatic task. A “simple” robot is a robot with all joints being revolute joints with axes perpendicular or parallel to the arm segments. A general formulation, and a solution algorithm, for the “inverse kinematics problem” for such systems, is presented. The solution is obtained using orthogonal complement arrays which in turn are obtained from a “zero-eigenvalues” algorithm. The paper concludes with an assertion that this solution, called the “natural dynamics solution,” is optimal in that it requires the least energy to drive the robot.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 123-129 ◽  
Author(s):  
John Q. Gan ◽  
Eimei Oyama ◽  
Eric M. Rosales ◽  
Huosheng Hu

For robotic manipulators that are redundant or with high degrees of freedom (dof), an analytical solution to the inverse kinematics is very difficult or impossible. Pioneer 2 robotic arm (P2Arm) is a recently developed and widely used 5-dof manipulator. There is no effective solution to its inverse kinematics to date. This paper presents a first complete analytical solution to the inverse kinematics of the P2Arm, which makes it possible to control the arm to any reachable position in an unstructured environment. The strategies developed in this paper could also be useful for solving the inverse kinematics problem of other types of robotic arms.


Author(s):  
M. Tucker ◽  
N. D. Perreira

Abstract A procedure for obtaining solutions to the general inverse kinematics problem for both position and velocity is presented. Solutions to this problem are required for improved robot control and linkage synthesis. The procedure requires obtaining the inverse of the actual robot linkage Jacobian. A procedure to detect the presence of singularities in the Jacobians and their causes are given. Inverse solution techniques applicable to robots with less than, equal to, or greater than six degrees of freedom and their implementation to robots with various types of singularities is outlined. For each case, the implementation of both the complete Moore-Penrose inverse and a robot specific pseudo inverse are included. Although it is not necessary to use the complete Moore-Penrose inverse on any particular robot, it can be used to obtain generic inverse routines for general purpose applications.


Author(s):  
Lung-Wen Tsai ◽  
Richard Stamper

Abstract This paper presents a novel three degree of freedom parallel manipulator that employs only revolute joints and constrains the manipulator output to translational motion. Closed-form solutions are developed for both the inverse and forward kinematics. It is shown that the inverse kinematics problem has up to four real solutions, and the forward kinematics problem has up to 16 real solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sérgio Ricardo Xavier da Silva ◽  
Leizer Schnitman ◽  
Vitalino Cesca Filho

This article presents a solution of the inverse kinematics problem of 7-degrees-of-freedom serial redundant manipulators. A 7-degrees-of-freedom (7-DoF) redundant manipulator can avoid obstacles and thus improve operational performance. However, its inverse kinematics is difficult to solve since it has one more DoF than that necessary for reaching the whole workspace, which causes infinite solutions. In this article, Gröbner bases theory is proposed to solve the inverse kinematics. First, the Denavit–Hartenberg model for the manipulator is established. Second, different joint configurations are obtained using Gröbner bases theory. All solutions are confirmed with the aid of algebraic computing software, confirming that this method is accurate and easy to be implemented.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Mai Ngoc Anh ◽  
Duong Xuan Bien

This study presents the construction of a Vietnamese voice recognition module and inverse kinematics control of a redundant manipulator by using artificial intelligence algorithms. The first deep learning model is built to recognize and convert voice information into input signals of the inverse kinematics problem of a 6-degrees-of-freedom robotic manipulator. The inverse kinematics problem is solved based on the construction and training. The second deep learning model is built using the data determined from the mathematical model of the system’s geometrical structure, the limits of joint variables, and the workspace. The deep learning models are built in the PYTHON language. The efficient operation of the built deep learning networks demonstrates the reliability of the artificial intelligence algorithms and the applicability of the Vietnamese voice recognition module for various tasks.


2015 ◽  
Vol 762 ◽  
pp. 305-311
Author(s):  
Mihai Crenganis ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, Fuzzy Logic implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


Sign in / Sign up

Export Citation Format

Share Document