Producing Hydrogen and Power Using Chemical Looping Combustion and Water-Gas Shift

Author(s):  
Niall R. McGlashan ◽  
Peter R. N. Childs ◽  
Andrew L. Heyes ◽  
Andrew J. Marquis

A cycle capable of generating both hydrogen and power with “inherent” carbon capture is proposed and evaluated. The cycle uses chemical looping combustion to perform the primary energy release from a hydrocarbon, producing an exhaust of CO. This CO is mixed with steam and converted to H2 and CO2 using the water-gas shift reaction (WGSR). Chemical looping uses two reactions with a recirculating oxygen carrier to oxidize hydrocarbons. The resulting oxidation and reduction stages are preformed in separate reactors—the oxidizer and reducer, respectively, and this partitioning facilitates CO2 capture. In addition, by careful selection of the oxygen carrier, the equilibrium temperature of both redox reactions can be reduced to values below the current industry standard metallurgical limit for gas turbines. This means that the irreversibility associated with the combustion process can be reduced significantly, leading to a system of enhanced overall efficiency. The choice of oxygen carrier also affects the ratio of CO versus CO2 in the reducer’s flue gas, with some metal oxide reduction reactions generating almost pure CO. This last feature is desirable if the maximum H2 production is to be achieved using the WGSR reaction. Process flow diagrams of one possible embodiment using a zinc based oxygen carrier are presented. To generate power, the chemical looping system is operated as part of a gas turbine cycle, combined with a bottoming steam cycle to maximize efficiency. The WGSR supplies heat to the bottoming steam cycle, and also helps to raise the steam necessary to complete the reaction. A mass and energy balance of the chemical looping system, the WGSR reactor, steam bottoming cycle, and balance of plant is presented and discussed. The results of this analysis show that the overall efficiency of the complete cycle is dependent on the operating pressure in the oxidizer, and under optimum conditions exceeds 75%.

Author(s):  
Niall R. McGlashan ◽  
Peter R. N. Childs ◽  
Andrew L. Heyes ◽  
Andrew J. Marquis

A cycle capable of generating both hydrogen and power with ‘inherent’ carbon capture is proposed and evaluated. The cycle uses chemical looping combustion (CLC) to perform the primary energy release from a hydrocarbon, producing an exhaust of CO. This CO is mixed with steam and converted to H2 and CO2 using the water-gas shift reaction (WGSR). Chemical looping uses two reactions with a re-circulating oxygen carrier to oxidise hydrocarbons. The resulting oxidation and reduction stages are preformed in separate reactors — the oxidiser and reducer respectively, and this partitioning facilitates CO2 capture. In addition, by careful selection of the oxygen carrier, the equilibrium temperature of both redox reactions can be reduced to values below the current industry standard metallurgical limit for gas turbines. This means that the irreversibility associated with the combustion process can be reduced significantly, leading to a system of enhanced overall efficiency. The choice of oxygen carrier also affects the ratio of CO vs. CO2 in the reducer’s flue gas, with some metal oxide reduction reactions generating almost pure CO. This last feature is desirable if the maximum H2 production is to be achieved using the WGSR reaction. Process flow diagrams of one possible embodiment using a zinc based oxygen carrier are presented. To generate power, the chemical looping system is operated as part of a gas turbine cycle, combined with a bottoming steam cycle to maximise efficiency. The WGSR supplies heat to the bottoming steam cycle, as well as helping to raise the steam necessary to complete the reaction. A mass and energy balance of the chemical looping system, the WGSR reactor, steam bottoming cycle and balance of plant, is presented and discussed. The results of this analysis show that the overall efficiency of the complete cycle is dependant on the operating pressure in the oxidiser, and under optimum conditions, exceeds 75%.


Author(s):  
N R McGlashan

The poor performance of internal combustion (IC) engines can be attributed to the departure from equilibrium in the combustion process. This departure is expressed numerically, as the difference between the working fluid's temperature and an ideal ‘combustion temperature’, calculated using a simple expression. It is shown that for combustion of hydrocarbons to be performed reversibly in a single reaction, impractically high working fluid temperatures are required — typically at least 3500 K. Chemical-looping combustion (CLC) is an alternative to traditional, single-stage combustion that performs the oxidation of fuels using two reactions, in separate vessels: the oxidizer and reducer. An additional species circulates between the oxidizer and reducer carrying oxygen atoms. Careful selection of this oxygen carrier can reduce the equilibrium temperature of the two redox reactions to below current metallurgical limits. Consequently, using CLC it is theoretically possible to approach a reversible IC engine without resorting to impractical temperatures. CLC also lends itself to carbon capture, as at no point is N2 from the air allowed to mix with the CO2 produced in the reduction process and therefore a post-combustion scrubbing plant is not required. Two thermodynamic criteria for selecting the oxygen carrier are established: the equilibrium temperature of both redox reactions should lie below present metallurgical limits. Equally, both reactions must be sufficiently hot to ensure that their reaction velocity is high. The key parameter determining the two reaction temperatures is the change in standard state entropy for each reaction. An analysis is conducted for an irreversible CLC system using two Rankine cycles to produce shaft work, giving an overall efficiency of 86.5 per cent. The analysis allows for irreversibilites in turbine, boiler, and condensers, but assumes reactions take place at equilibrium. However, using Rankine cycles in a CLC system is considered impractical because of the need for high-temperature, indirect heat exchange. An alternative arrangement, avoiding indirect heat exchange, is discussed briefly.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract Chemical looping combustion (CLC) is an attractive technology to achieve inherent CO2 separation with low energy penalty. In CLC, the conventional one-step combustion process is replaced by two successive reactions in two reactors, a fuel reactor (FR) and an air reactor (AR). In addition to experimental techniques, computational fluid dynamics (CFD) is a powerful tool to simulate the flow and reaction characteristics in a CLC system. This review attempts to analyze and summarize the CFD simulations of CLC process. Various numerical approaches for prediction of CLC flow process are first introduced and compared. The simulations of CLC are presented for different types of reactors and fuels, and some key characteristics including flow regimes, combustion process, and gas-solid distributions are described in detail. The full-loop CLC simulations are then presented to reveal the coupling mechanisms of reactors in the whole system such as the gas leakage, solid circulation, redox reactions of the oxygen carrier, fuel conversion, etc. Examples of partial-loop CLC simulation are finally introduced to give a summary of different ways to simplify a CLC system by using appropriate boundary conditions.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5324
Author(s):  
Minbeom Lee ◽  
Yikyeom Kim ◽  
Hyun Suk Lim ◽  
Ayeong Jo ◽  
Dohyung Kang ◽  
...  

Reverse water–gas shift chemical looping (RWGS-CL) offers a promising means of converting the greenhouse gas of CO2 to CO because of its relatively low operating temperatures and high CO selectivity without any side product. This paper introduces a core–shell structured oxygen carrier for RWGS-CL. The prepared oxygen carrier consists of a metal oxide core and perovskite shell, which was confirmed by inductively coupled plasma mass spectroscopy (ICP-MS), XPS, and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) measurements. The perovskite-structured shell of the prepared oxygen carrier facilitates the formation and consumption of oxygen defects in the metal oxide core during H2-CO2 redox looping cycles. As a result, amounts of CO produced per unit weight of the core–shell structured oxygen carriers were higher than that of a simple perovskite oxygen carrier. Of the metal oxide cores tested, CeO2, NiO, Co3O4, and Co3O4-NiO, La0.75Sr0.25FeO3-encapsulated Co3O4-NiO was found to be the most promising oxygen carrier for RWGS-CL, because it was most productive in terms of CO production and exhibited long-term stability.


2016 ◽  
Vol 22 (4) ◽  
pp. 717-721
Author(s):  
Mansing M Badadare ◽  
Naina M Adbale ◽  
R. B Khomane ◽  
Ganesh R Kale

2015 ◽  
Vol 29 (6) ◽  
pp. 3933-3943 ◽  
Author(s):  
Xiaoming Zheng ◽  
Qingquan Su ◽  
Wanliang Mi

2012 ◽  
Vol 550-553 ◽  
pp. 974-978
Author(s):  
Wen Yan Li ◽  
Xing Lei Liu ◽  
Qiu Luan Chen ◽  
Feng Ming Chu

Chemical-looping combustion (CLC) is a novel technology, which has inherent property of separating the greenhouse gas CO2, which uses oxygen carriers to transfer oxygen for combustion from air to fuel. The reactivity of Fe2O3/Al2O3 oxygen carrier was assessed by measuring their ability to oxidize CO. The kinetics and mechanism of oxygen carrier have been studied by TG and DTG techniques. The kinetic mechanism function of the reaction between Fe2O3/Al2O3 and CO has been built using the Coats-Redfern equation.


Author(s):  
Rehan Naqvi ◽  
Olav Bolland ◽  
O̸yvind Brandvoll ◽  
Kaare Helle

In this paper an alternative to so-called ‘oxy-fuel’ combustion has been evaluated. Chemical Looping Combustion (CLC) is an innovative concept of CO2 capture from combustion of fossil fuels in power plants. CLC is closely related to oxy-fuel combustion as the chemically bound oxygen reacts in a stoichiometric ratio with the fuel. In CLC, the overall combustion takes place in two steps. In a reduction reactor fuel is oxidised by the oxygen carrier i.e. the metal oxide MeO which is reduced to metal oxide with a lower oxidation number, Me. Me flows to an oxidation reactor where it is oxidised by oxygen in the air. In this way pure oxygen is supplied to fuel without using an energy intensive traditional air separation unit. This paper presents thermodynamic cycle analysis of a CLC-power plant. A steady-state model has been developed for the solid-gas reactions occurring in the reactor system. The model is applied to analyse the system under two configurations; a combined cycle and a conventional steam cycle. A turbine-cooling model has also been implemented to evaluate the turbine cooling penalty in the combined cycle configuration. Effects of exhaust recirculation for coking prevention and incomplete fuel conversion have also been investigated. Performance of the oxygen carrier has been idealised except for the degrees of reduction and oxidation. Energy needs for CO2 capture have properly been taken into account. The results show that an optimum efficiency of 49.7% can be achieved under given conditions with a CLC-combined cycle at zero emissions level. With turbine cooling, efficiency falls by 1.2% points under the same conditions. The CLC-steam cycle is capable of achieving 40.1% efficiency with zero emissions. The results show that CLC has high potential for power generation with inherent CO2 capture. This work will be useful in designing CLC systems after the reactor system has been analysed experimentally for long-term operations.


Sign in / Sign up

Export Citation Format

Share Document