Tresca’s Yield Condition and the Rotating Disk

1983 ◽  
Vol 50 (3) ◽  
pp. 676-678 ◽  
Author(s):  
U. Gamer

The displacement field belonging to the elastic-plastic stress field in a rotating solid disk that can be found with the help of Tresca’s yield condition, in textbooks on plasticity, is discontinuous at the elastic-plastic interface. Tresca’s yield condition cannot be applied to this problem since its associated flow rule predicts a negative plastic strain caused by a tensile stress.

2004 ◽  
Vol 71 (3) ◽  
pp. 427-429 ◽  
Author(s):  
N. Alexandrova ◽  
S. Alexandrov

The plane state of stress in an elastic-plastic rotating anisotropic annular disk is studied. To incorporate the effect of anisotropy on the plastic flow, Hill’s quadratic orthotropic yield criterion and its associated flow rule are adopted. A semi-analytical solution is obtained. The solution is illustrated by numerical calculations showing various aspects of the influence of plastic anisotropy on the stress distribution in the rotating disk.


1970 ◽  
Vol 92 (2) ◽  
pp. 309-316 ◽  
Author(s):  
E. P. Popov ◽  
M. Khojasteh-Bakht ◽  
P. Sharifi

Sixteen ASME standard torispherical heads attached to cylinders and subjected to internal pressure are analyzed as elastic and/or elastic-plastic shells using a new finite element. As basic elements, thin-walled frusta with curved meridians having common tangents and radii at the nodal circles are employed assuring good accuracy of the results. In the plastic analysis each wall-thickness was subdivided into concentric lamina in order to monitor the behavior of the material. The incremental law of plasticity in conjunction with the Mises yield condition and the associated flow rule were used in the inelastic range. The results of the analysis are presented in detail and are compared with the provisions of the ASME Pressure Vessel Code.


2010 ◽  
Vol 168-170 ◽  
pp. 1126-1129
Author(s):  
Wen Xu Ma ◽  
Ying Guang Fang

For the soil is a very complex natural material, significant strain gradient effect exist in soil analysis. Based on the "gradient" phenomenon, we add the plastic strain gradient hardening item into the traditional Cambridge yield surface. By using the consistency conditions and associated flow rule, we get the explicit expression of plastic strain gradient stiffness matrix. And the finite element method of plastic strain gradient is also shown in this article. Plastic strain gradient is actually a phenomenological non-local model containing microstructure information of the material. It may overcome the difficulties in simulating the gradient phenomenon by traditional mechanical model.


1973 ◽  
Vol 2 (4) ◽  
pp. 216-222
Author(s):  
B. Slevinsky ◽  
J. B. Haddow

A numerical method for the analysis of the isothermal elastic-plastic expansion, by internal pressure, of cylindrical tubes with various end conditions is presented. The Tresca yield condition and associated plastic flow rule are assumed and both non-hardening and work-hardening tubes are considered with account being taken of finite plastic deformation. Tubes which undergo further plastic deformation on unloading are also considered. Expansion of a cylindrical cavity from zero radius in an infinite medium is considered as a limiting case.


Author(s):  
K. S. Choi ◽  
J. Pan

In this paper, cyclic plastic behaviors of pressure-sensitive materials based on an anisotropic hardening rule with two non-associated flow rules are examined. The Drucker-Prager pressure-sensitive yield function and the Mises plastic potential function are adopted to explore the cyclic plastic behaviors of pressure-sensitive materials or strength-differential materials. The constitutive relations are formulated for the initial loading and unloading/reloading processes based on the anisotropic hardening rule of Choi and Pan [1]. Non-associated flow rules are employed to derive closed-form stress-plastic strain relations under uniaxial cyclic loading conditions. The stress-plastic strain curves based on a conventional non-associated flow rule do not close, and show a significant ratcheting under uniaxial cyclic loading conditions. A new non-conventional non-associated flow rule is then formulated based on observed nearly closed hysteresis loops of pressure-sensitive materials. The stress-plastic strain curves based on the non-conventional non-associated flow rule show closed hysteresis loops under uniaxial cyclic loading conditions. The results indicate that the anisotropic hardening rule with the non-conventional non-associated flow rule describes well the strength-differential effect and the asymmetric closed hysteresis loops as observed in the uniaxial cyclic loading tests of pressure-sensitive materials.


1955 ◽  
Vol 22 (3) ◽  
pp. 372-374
Author(s):  
H. G. Hopkins ◽  
W. Prager

Abstract The paper is concerned with the limits of economy of material in a simply supported circular plate under a uniformly distributed transverse load. The plate material is supposed to be plastic-rigid and to obey Tresca’s yield condition and the associated flow rule. The criterion of failure adopted is that used in limit analysis. It is shown that the plate of uniform thickness has a weight efficiency of about 82 per cent. Stepped plates of segmentwise constant thickness are discussed, and the plate of continuously varying thickness is treated as the limiting case obtained by letting the number of steps go to infinity.


1961 ◽  
Vol 28 (3) ◽  
pp. 395-401 ◽  
Author(s):  
G. Eason

In this paper the problem of the elastic, plastic bending of a circular plate which is simply supported at its edge and carries a constant load over a central circular area is considered. The von Mises yield condition and the associated flow rule are assumed and the material of the plate is assumed to be nonhardening, elastic, perfectly plastic, and compressible. Stress fields are obtained in all cases and a velocity field is presented for the case of point loading. Some numerical results are given comparing the results obtained here with those obtained when the Tresca yield condition is assumed.


1971 ◽  
Vol 93 (4) ◽  
pp. 708-712 ◽  
Author(s):  
J. B. Haddow ◽  
T. M. Hrudey

A theory for elastic-plastic deformation with finite elastic strain is outlined. The results of this theory are specialized to consider a metal subjected to high hydrostatic pressure which produces finite elastic volume change. Drucker’s postulate is used to obtain the form of the yield condition and the associated plastic flow rule.


1962 ◽  
Vol 29 (4) ◽  
pp. 735-743 ◽  
Author(s):  
P. S. Theocaris

The paper presents an experimental method for the solution of the plane state of stress of an elastic-plastic, isotropic solid that obeys the Mises yield condition and the associated flow rule. The stress-strain law is an incremental type law, determined by the Prandtl-Reuss stress-strain relations. The method consists in determining the difference of principal strains in the plane of stress by using birefringent coatings cemented on the surface of the tested solid. A determination of relative retardation using polarized light at normal incidence, complemented by a determination in two oblique incidences at 45 deg along with the tracing of isoclinics, procures enough data for obtaining the principal strains all over the field. The calculation of the elastic and plastic components of strains is obtained in a step-by-step process of loading. It is assumed that during each step the Cartesian components of stress and strain remain constant. The stress increments and the stresses can be found thereafter by using the Prandtl-Reuss stress-strain relations and used for the evaluation of the components of strains and their increments in the next step. The method can be used with any material having any arbitrary stress-strain curve, provided that convenient formulas are established relating the stress and strain components and their increments at each point of the loading path. The method is applied to an example of contained plastic flow in a notched tensile bar of an elastic, perfectly plastic material under conditions of plane stress.


Sign in / Sign up

Export Citation Format

Share Document