scholarly journals Discussion: “Effect of Weather, Age, and Cyclic Pressurizations on Structural Performance of Acrylic Plastic Spherical Shells Under External Pressure Loading” (Stachiw, J. D., and Dolan, R. B., 1982, ASME J. Eng. Ind., 104, pp. 190–200)

1982 ◽  
Vol 104 (2) ◽  
pp. 200-200
Author(s):  
E. Briggs
1982 ◽  
Vol 104 (2) ◽  
pp. 190-200
Author(s):  
J. D. Stachiw ◽  
R. B. Dolan

Weathering, aging, and cyclic application of stresses to acrylic plastic degrades its physical properties. The rate of degradation must be known if the useful life of load-carrying acrylic structures is to be predicted with accuracy. Physical and chemical tests conducted by the authors on thick spherical shells indicate that the weathering affects only a thin surface layer of material, which after 10 years is still less than 0.020 in. thick. Similarly, pollutants in the ambient atmosphere of the pressure chamber affect the surface layer of the spherical shell facing the interior of the chamber. The physical and chemical properties of the thin surface layer affected by weathering differed significantly from those in the middle of 2.5-in.-thick Plexiglas G plate; the decrease in properties was: 40 percent in tensile elongation, 34 percent in flexure strength, 21 percent in tensile strength, and 79 percent in molecular weight. Since the interior body of the thick plastic shell is not affected by weathering or chemical attack and the affected surface layers are very thin, the ability of the shell to carry compressive loads is not significantly diminished after 10 years of service. Only an 11 percent decrease of critical pressure was observed in spherical shells with thickness of 1 in. subjected to 10 years of weathering and 2000 pressure cycles of 8 hour duration each to 30 percent of its original critical pressure. Based on the preceding data it appears safe to extend the operational life from 10 to 20 years of all acrylic plastic spherical shells with bearing surfaces normal to spherical surface designed on the basis of ANSI/ASME PVHO-1 Safety Standard for external pressure service.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Francisco López Jiménez ◽  
Joel Marthelot ◽  
Anna Lee ◽  
John W. Hutchinson ◽  
Pedro M. Reis

We explore the effect of precisely defined geometric imperfections on the buckling load of spherical shells under external pressure loading, using finite-element analysis that was previously validated through precision experiments. Our numerical simulations focus on the limit of large amplitude defects and reveal a lower bound that depends solely on the shell radius to thickness ratio and the angular width of the defect. It is shown that, in the large amplitude limit, the buckling load depends on an single geometric parameter, even for shells of moderate radius to thickness ratio. Moreover, numerical results on the knockdown factor are fitted to an empirical, albeit general, functional form that may be used as a robust design guideline for the critical buckling conditions of pressurized spherical shells.


2009 ◽  
Vol 31 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Dao Huy Bich

In the present paper the non-linear buckling analysis of functionally graded spherical shells subjected to external pressure is investigated. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. In the formulation of governing equations geometric non-linearity in all strain-displacement relations of the shell is considered. Using Bubnov-Galerkin's method to solve the problem an approximated analytical expression of non-linear buckling loads of functionally graded spherical shells is obtained, that allows easily to investigate stability behaviors of the shell.


1989 ◽  
Vol 33 (04) ◽  
pp. 318-325
Author(s):  
Dario Boote ◽  
Donatella Mascia

Submersible structures consist merely of simple and double curvature thin-walled shells. For this kind of structure, collapse occurs due to the combined nonlinear action of buckling and plasticity of material. Load-carrying capacity may then be assessed mainly by two approaches: experimental investigations and step-by-step numerical procedures. In nonlinear analyses, the results obtained are influenced by the magnitude of the load increment adopted. Solution procedures are then required in order to choose adequate parameters for material failure description as well as elastic nonlinearity. The aim of this paper is to carry out a suitable numerical procedure whose reliability does not depend on the finite-element code adopted.


Sign in / Sign up

Export Citation Format

Share Document