Research on Instantaneous Cutting Force of High Speed Ball-End Milling Cutter

2011 ◽  
Vol 188 ◽  
pp. 277-282 ◽  
Author(s):  
Chang Xing Qi ◽  
Bin Jiang ◽  
Min Li Zheng ◽  
Y.J. Yang ◽  
P. Sun

For the instability of ball-end milling cutter in high speed milling, instantaneous cutting process of high speed milling hardened steel was studied. The model of instantaneous cutting layer parameters of high speed ball-end cutter was established, and the influence of cutting speed and inclination angles on instantaneous cutting layer parameters were obtained. Using the model, instantaneous cutting force was studied, and high speed milling experiment was processed. Results show that the increase of cutting speed makes the change rate of cutting layer parameters increasing, leads to the energy concentration in cutting process, and increases the impact on milling cutter. The increase of inclination angle makes the instantaneous cutting layer parameters show a trend of decrease and the decrease of cutting thickness more rapidly, which caused instantaneous unit cutting force to increase and the instantaneous main cutting force appears increasing trend, and the cutting process become unstable.

2010 ◽  
Vol 455 ◽  
pp. 127-131
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Jun Zhou ◽  
D.H. Xia

In order to depress cutter vibration caused by high hardness and periodic change of cutting force in high speed milling complex surface, investigated the modal characteristics of ball-end milling cutter through the modal analysis and transient analysis. Using the models of dynamic cutting force and cutting vibration, acquired dynamics characteristics of high speed ball-end milling cutter by the spectrum analysis of dynamic cutting force, simulation analysis of cutting vibration and experiment of high speed milling hardened steel. Results indicate that high speed ball-end milling energy concentrates in few special frequencies, the rotational speed and the numbers of cutter teeth determine the fundamental frequency. High speed ball-end milling cutter easily makes radial bending vibration by the lower modal characteristics, the overhang and inclination angle of cutter affect its dynamics characteristics significantly, and the modal parameters and vibration model of cutter acquired by step response method have higher credibility.


2010 ◽  
Vol 29-32 ◽  
pp. 215-219
Author(s):  
Zhen Yu Zhao ◽  
Ming Jun Liu ◽  
Bai Liu

Pocket corner in the high-speed milling (HSM) often occur under-cut, over-cut, vibration and other phenomena. This not only reduces tool life, seriously affected the work-piece machining accuracy and processing efficiency. In the paper, the impact of cutting speed on cutting forces is studied in the pocket corner based on the high-speed milling experiments. The results show that cutting force increased slightly with the increase in cutting speed, and that cutting force no significant change with the increase in radial depth of cut.


2014 ◽  
Vol 800-801 ◽  
pp. 475-478 ◽  
Author(s):  
Cai Xu Yue ◽  
Hui Ze Feng ◽  
Jing Ma ◽  
Zhao Nan Zhong ◽  
Fei Liu

The high-speed milling experiments on hardened Cr12MoV steel were carried out with ball end milling cutter of different edge parameters. The influences of helix angle and rake angle on tool life and surface roughness were focused on. Meanwhile, the impacts of edge parameters on cutting edge stiffness and flank wear were analyzed on the condition of high-speed milling. It carried out that smaller helix angle and negative rake angle selected during high speed milling can guarantee quality of surface manufactured as well as longer tool life.


2016 ◽  
Vol 836-837 ◽  
pp. 168-174 ◽  
Author(s):  
Ying Fei Ge ◽  
Hai Xiang Huan ◽  
Jiu Hua Xu

High-speed milling tests were performed on vol. (5%-8%) TiCp/TC4 composite in the speed range of 50-250 m/min using PCD tools to nvestigate the cutting temperature and the cutting forces. The results showed that radial depth of cut and cutting speed were the two significant influences that affected the cutting forces based on the Taguchi prediction. Increasing radial depth of cut and feed rate will increase the cutting force while increasing cutting speed will decrease the cutting force. Cutting force increased less than 5% when the reinforcement volume fraction in the composites increased from 0% to 8%. Radial depth of cut was the only significant influence factor on the cutting temperature. Cutting temperature increased with the increasing radial depth of cut, feed rate or cutting speed. The cutting temperature for the titanium composites was 40-90 °C higher than that for the TC4 matrix. However, the cutting temperature decreased by 4% when the reinforcement's volume fraction increased from 5% to 8%.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3266 ◽  
Author(s):  
Yuan Li ◽  
Guangming Zheng ◽  
Xiang Cheng ◽  
Xianhai Yang ◽  
Rufeng Xu ◽  
...  

The cutting performance of cutting tools in high-speed machining (HSM) is an important factor restricting the machined surface integrity of the workpiece. The HSM of AISI 4340 is carried out by using coated tools with TiN/TiCN/TiAlN multi-coating, TiAlN + TiN coating, TiCN + NbC coating, and AlTiN coating, respectively. The cutting performance evaluation of the coated tools is revealed by the chip morphology, cutting force, cutting temperature, and tool wear. The results show that the serration and shear slip of the chips become more clear with the cutting speed. The lower cutting force and cutting temperature are achieved by the TiN/TiCN/TiAlN multi-coated tool. The flank wear was the dominant wear form in the milling process of AISI 4340. The dominant wear mechanisms of the coated tools include the crater wear, coating chipping, adhesion, abrasion, and diffusion. In general, a TiN/TiCN/TiAlN multi-coated tool is the most suitable tool for high-speed milling of AISI 4340, due to the lower cutting force, the lower cutting temperature, and the high resistance of the element diffusion.


2014 ◽  
Vol 494-495 ◽  
pp. 602-605
Author(s):  
Zeng Hui An ◽  
Xiu Li Fu ◽  
Ya Nan Pan ◽  
Ai Jun Tang

Cutting forces is one of the important physical phenomena in metal cutting process. It directly affects the surface quality of machining, tool life and cutting stability. The orthogonal experiments of cutting forces and influence factors with indexable and solid end mill were accomplished and the predictive model of milling force was established during high speed end milling 7050-T7451 aluminum alloy. The paper makes research mainly on the influence which the cutting speed, cutting depth and feed have on the cutting force. The experimental results of single factor showed that the cutting forces increase earlier and drop later with the increase of cutting speed, and the cutting speed of inflexion for 7050-T7451 is 1100m/min. As axial cutting depth, radial cutting depth and feed rate increase, the cutting force grows in different degree. The cutting force is particularly sensitive to axial cutting depth and slightly to the radial cutting depth.


2014 ◽  
Vol 800-801 ◽  
pp. 484-488
Author(s):  
Cai Xu Yue ◽  
Fu Gang Yan ◽  
Lu Bin Li ◽  
Hai Yan You ◽  
Qing Jie Yu

Ball-end milling cutter is widely used in machining complex surface parts , and it is need to select a reasonable geometric parameters of the milling cutter for different work piece materials and shapes and cutting parameters. This article is based on UG secondary development technology to develop the Multi-blade ball-end milling cutter parametric design system, it is automatic, fast and efficient to build all kinds of parameters of double, three and four blades ball-end milling cutter model required for user.


Sign in / Sign up

Export Citation Format

Share Document