Experimental Complex Modal Analysis of Machine Tool Structures

1989 ◽  
Vol 111 (2) ◽  
pp. 116-124 ◽  
Author(s):  
Y. C. Shin ◽  
K. F. Eman ◽  
S. M. Wu

Despite the well-established theories and considerable experimental research, the identification of the complex mode shapes of a real machine tool structure with general damping still remains a formidable task. Moreover, the existence of closely coupled modes with heavy damping introduces additional difficulties. This paper presents a detailed procedure for experimental complex modal analysis of a machine tool structure by the Dynamic Data System method. The accuracy and efficiency are first illustrated by numerical examples through simulation studies. It has been shown that closely coupled modes and modes with heavy damping can be successfully identified from both simulated and actual experimental data from a machine tool. Complex mode shapes were also obtained without adding any complexity or losing accuracy as compared to normal mode analysis. The experimental results obtained by the proposed method were compared with those based on the FFT algorithm.

2000 ◽  
Vol 123 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lixin Zhang ◽  
Jean W. Zu ◽  
Zhichao Hou

A linear damped hybrid (continuous/discrete components) model is developed in this paper to characterize the dynamic behavior of serpentine belt drive systems. Both internal material damping and external tensioner arm damping are considered. The complex modal analysis method is developed to perform dynamic analysis of linear non-self-adjoint hybrid serpentine belt-drive systems. The adjoint eigenfunctions are acquired in terms of the mode shapes of an auxiliary hybrid system. The closed-form characteristic equation of eigenvalues and the exact closed-form solution for dynamic response of the non-self-adjoint hybrid model are obtained. Numerical simulations are performed to demonstrate the method of analysis. It is shown that there exists an optimum damping value for each vibration mode at which vibration decays the fastest.


2011 ◽  
Vol 383-390 ◽  
pp. 6717-6721 ◽  
Author(s):  
S. Pedrammehr ◽  
Hamid Farrokhi ◽  
A. Khani Sheykh Rajab ◽  
S. Pakzad ◽  
M. Mahboubkhah ◽  
...  

Machine tool vibrations have great impact on machining process. In this paper the dynamic behavior and modal parameters of milling machine is presented. For this purpose, the CAD model of the milling machine structure is provided in CATIA and then Natural frequencies and mode shapes of the machine tool structure are carried out through FEM modal analysis under ANSYS Workbench. The model is evaluated and corrected with experimental results by modal testing on FP4M milling machine. Finally, the natural frequencies and mode shapes obtained by both experimental and FEM modal analysis are compared. The results of two methods are in widely agreement.


Author(s):  
B. F. Feeny ◽  
A. K. Feeny

The kinematics of the transverse motion of a swimming fish are analyzed using a complex modal decomposition. Cinematographic images of a swimming whiting (Gadus merlangus) were obtained from the work of Sir James Gray (Journal of Experimental Biology, 1933). The position of the midline for each image was determined, and used to produce planar positions of virtual markers distributed along the midline of the fish. Transverse deflections of each virtual marker were used for the complex orthogonal decomposition of modes. This method was applied to a normal whiting and an amputated whiting, both of Gray’s paper. The fish motions were well represented by a single complex mode, which was used as a modal filter. The modal coordinate was also extracted. The mode and modal coordinate were used to estimate the frequency, wavelength, and wave speed. The amputated fish was compared to the non-amputated fish, and the different amount of traveling in the respective waveforms was quantified.


Author(s):  
Abdolreza Pasharavesh ◽  
MT Ahmadian ◽  
H Zohoor

In this paper, coupled electromechanical behavior of a vibrational energy harvesting system composed of a unimorph piezoelectric laminated beam with a large attached tip mass is investigated. To achieve this goal, first the electromechanically coupled partial differential equations governing the lateral displacement and output voltage of the harvester are extracted through exploiting the Hamilton’s principle. Considering vibration damping due to mechanical to electrical energy conversion, a complex modal analysis is performed to extract the complex eigenfrequencies and eigenfunctions of the system. Furthermore, an exact analytical solution is presented for the system response to the harmonic base excitations, including output voltage and harvested power. To validate the analytical results, at the next step a finite element simulation is conducted through ABAQUS software. To perform a fully-coupled analysis which brings into account the effect of harvesting circuit, user subroutine User-defined Amplitude (UAMP) is utilized to calculate the voltage–current relation and impose the correct electrical charge on the electrodes in each step by monitoring the output voltage of the system at previous time increments. Results of both analytical and numerical simulations are compared for a Micro-Electro-Mechanical Systems (MEMS) harvester as a case study, where a very good agreement is observed between them.


2017 ◽  
Vol 116 ◽  
pp. 162-177 ◽  
Author(s):  
Yue Pan ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Gang(Sheng) Chen

2012 ◽  
Vol 472-475 ◽  
pp. 2717-2721 ◽  
Author(s):  
Rajiv Kumar ◽  
Mohinder Pal Garg ◽  
Rakesh C. Sharma

Manufacturing industries now a days have stringent expectation from the machine tools in terms of productivity as well as quality of products.Vibration plays an important role in determining the quality of product.If the pattern of vibration prevailing in the machine tool during cutting is known,then machine tool structure can be designed in such a way so that natural frequency of machine tool structure can be isolated from the forced frequency.So, this study is focused on finding the natural frequency and mode shapes of radial drilling machine structure.Finite element analysis has been done to find out the natural frequencies and mode shapes of radial drilling machine structure.Assembled mass and stiffness matrices are obtained for each element and solved by using inverse iteration technique.


1974 ◽  
Vol 96 (1) ◽  
pp. 187-195 ◽  
Author(s):  
J. Tlusty ◽  
K. C. Lau ◽  
K. Parthiban

The paper recapitulates the method of analyzing stability against chatter of machine tools as it has been practised by one of the authors for many years. Several new features of the method are presented and, mainly, comments are given on the use of shock excitation for determining both the receptances of the structure and its mode shapes. The method itself consists of comparing results of cutting tests and of excitation tests for various directional orientations of the cut in the structure and of identifying the contribution of the individual modes to the resulting degree of stability.


2014 ◽  
Vol 333 (7) ◽  
pp. 2130-2163 ◽  
Author(s):  
Natale Alati ◽  
Giuseppe Failla ◽  
Adolfo Santini

Sign in / Sign up

Export Citation Format

Share Document