Fracture Mechanics Aspects of the Structural Integrity Technology of Spherical Aluminum Containment Vessels for LNG Tankers

1980 ◽  
Vol 102 (3) ◽  
pp. 303-314 ◽  
Author(s):  
J. G. Kaufman ◽  
R. J. Bucci ◽  
R. A. Kelsey

The Kvaerner-Moss spherical tank design offers significant economic advantage for the shipboard transport of liquefied natural gas. An analytical and experimental approach based on fracture mechanics concepts was used to assist the designer in providing answers to the following basic questions: (1) Might a discontinuity smaller than detectable by nondestructive inspection lead to catastrophic fracture; (2) How fast would such a discontinuity grow under fatigue loading likely to occur during the lifetime of the tank; (3) Could a fatigue crack growing part way through the tank wall precipitate catastrophic fracture before it grows through the wall and is detected as a leak; and (4) If leakage develops, how much time is available to get the ship safely to port for discharge and repair? Both “critical” locations in the tank, i.e., the highest stressed region of the membrane and the equatorial ring, are examined. Available data indicating the safety of spherical tanks fabricated of aluminum alloy 5083-0 is documented.

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4380
Author(s):  
Alirio Andres Bautista Villamil ◽  
Juan Pablo Casas Rodriguez ◽  
Alicia Porras Holguin ◽  
Maribel Silva Barrera

The T-90 Calima is a low-wing monoplane aircraft. Its structure is mainly composed of different components of composite materials, which are mainly bonded by using adhesive joints of different thicknesses. The T-90 Calima is a trainer aircraft; thus, adverse operating conditions such as hard landings, which cause impact loads, may affect the structural integrity of aircrafts. As a result, in this study, the mode I crack propagation rate of a typical adhesive joint of the aircraft is estimated under impact and constant amplitude fatigue loading. To this end, effects of adhesive thickness on the mechanical performance of the joint under quasistatic loading conditions, impact and constant amplitude fatigue in double cantilever beam (DCB) specimens are experimentally investigated. Cyclic impact is induced using a drop-weight impact testing machine to obtain the crack propagation rate (da/dN) as a function of the maximum strain energy release rate (GImax) diagram; likewise, this diagram is also obtained under constant amplitude fatigue, and both diagrams are compared to determine the effect of each type of loading on the structural integrity of the joint. Results reveal that the crack propagation rate under impact fatigue is three orders of magnitude greater than that under constant amplitude fatigue.


Author(s):  
Anastasios M. Ioannides

Application of fracture mechanics concepts developed in various branches of engineering to the pavement problem can address current limitations, thereby advancing considerably existing pavement design procedures. The state of the art in fracture mechanics applications to pavement engineering is summarized, and an in-depth discussion of one of the major concerns in such applications, the specimen-size effect, is provided. It is concluded that the fictitious crack model proposed by Hillerborg appears most promising for computerized application to pavements. The similitude concepts developed by Bache will be very useful in such efforts. Both the desirability and the scarcity of suitable candidates to replace Miner’s cumulative linear fatigue hypothesis in conventional pavement design are confirmed. Fracture mechanics is shown to be a very promising engineering discipline from which innovations could be transplanted to pavement activities. Nonetheless, it is pointed out that rather slow progress characterizes fracture mechanics developments in general. Pavement engineers clearly need to remain abreast of and involved in fracture mechanics activities.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Abstract Nowadays, it has been recognized that probabilistic fracture mechanics (PFM) is a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants, because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. A PFM analysis code PFM analysis of structural components in aging light water reactor (PASCAL) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of domestic reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against nonductile fracture. A series of activities has been performed to verify the applicability of PASCAL. As a part of the verification activities, a working group was established with seven organizations from industry, universities, and institutes voluntarily participating as members. Through one-year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group, including the verification plan, approaches, and results.


2019 ◽  
Vol 70 (7) ◽  
pp. 2442-2446
Author(s):  
Simona Eugenia Manea ◽  
Vali Ifigenia Nicolof ◽  
Teodor Sima

The fracture mechanics concepts, as well as the concepts introduced on the basis of principle of critical energy, correlated with strength of materials with cracks is analysed. The equivalent stress method of strength was applied to cracked materials, by using the concept of local critical stress. This one depends on the material behavior and the deterioration due to crack. Experimental results have been obtained with specimens of OL304 steel with different cracks. The influence of crack depth and crack width is put into evidence.


2018 ◽  
Vol 48 (1) ◽  
pp. 43-49
Author(s):  
E. A. PRESEZNIAK ◽  
J. E. PEREZ IPIÑA ◽  
C. A. BAVASTRI

Damage prognosis uses numerical and experimental responses to identify damage in structures or part of them, thus allowing the remaining structural life estimation at a high level of precision. Current methods focalize on crack identification; however, a complete methodology to estimate the remaining life of a cracked structure is less developed. A methodology is presented in this paper drawing on concepts such as wavelets transform, dynamic structures, and vibration signals for crack identification; and fracture mechanics and nonlinear optimization to obtain the remaining life. Finite element theory was applied to obtain its vibration modes. The crack was modeled as a flexural spring connected to the elements in the crack position and the crack identification was performed in the wavelet domain. Nonlinear optimization techniques and fracture mechanics concepts were used to estimate the remaining fatigue life. A numerical-experimental case study is solved to show the fundamentals of this methodology.


Author(s):  
Felix Koelzow ◽  
Muhammad Mohsin Khan ◽  
Christian Kontermann ◽  
Matthias Oechsner

Abstract Several (accumulative) lifetime models were developed to assess the lifetime consumption of high-temperature components of steam and gas turbine power plants during flexible operation modes. These accumulative methods have several drawbacks, e.g. that measured loading profiles cannot be used within accumulative lifetime methods without manual corrections, and cannot be combined directly to sophisticated probabilistic methods. Although these methods are widely accepted and used for years, the accumulative lifetime prediction procedures need improvement regarding the lifetime consumption of thermal power plants during flexible operation modes. Furthermore, previous investigations show that the main influencing factor from the materials perspective, the critical damage threshold, cannot be statistically estimated from typical creep-fatigue experiments due to massive experimental effort and a low amount of available data. This paper seeks to investigate simple damage mechanics concepts applied to high-temperature components under creep-fatigue loading to demonstrate that these methods can overcome some drawbacks and use improvement potentials of traditional accumulative lifetime methods. Furthermore, damage mechanics models do not provide any reliability information, and the assessment of the resultant lifetime prediction is nearly impossible. At this point, probabilistic methods are used to quantify the missing information concerning failure probabilities and sensitivities and thus, the combination of both provides rigorous information for engineering judgment. Nearly 50 low cycle fatigue experiments of a high chromium cast steel, including dwell times and service-type cycles, are used to investigate the model properties of a simple damage evolution equation using the strain equivalence hypothesis. Furthermore, different temperatures from 300 °C to 625 °C and different strain ranges from 0.35% to 2% were applied during the experiments. The determination of the specimen stiffness allows a quantification of the damage evolution during the experiment. The model parameters are determined by Nelder-Mead optimization procedure, and the dependencies of the model parameters concerning to different temperatures and strain ranges are investigated. In this paper, polynomial chaos expansion (PCE) is used for uncertainty propagation of the model uncertainties while using non-intrusive methods (regression techniques). In a further post-processing step, the computed PCE coefficients of the damage variable are used to determine the probability of failure as a function of cycles and evolution of the probability density function (pdf). Except for the selected damage mechanics model which is considered simple, the advantages of using damage mechanics concepts combined with sophisticated probabilistic methods are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document