Application of Damage Mechanics and Polynomial Chaos Expansion for Lifetime Prediction of High-Temperature Components Under Creep-Fatigue Loading

Author(s):  
Felix Koelzow ◽  
Muhammad Mohsin Khan ◽  
Christian Kontermann ◽  
Matthias Oechsner

Abstract Several (accumulative) lifetime models were developed to assess the lifetime consumption of high-temperature components of steam and gas turbine power plants during flexible operation modes. These accumulative methods have several drawbacks, e.g. that measured loading profiles cannot be used within accumulative lifetime methods without manual corrections, and cannot be combined directly to sophisticated probabilistic methods. Although these methods are widely accepted and used for years, the accumulative lifetime prediction procedures need improvement regarding the lifetime consumption of thermal power plants during flexible operation modes. Furthermore, previous investigations show that the main influencing factor from the materials perspective, the critical damage threshold, cannot be statistically estimated from typical creep-fatigue experiments due to massive experimental effort and a low amount of available data. This paper seeks to investigate simple damage mechanics concepts applied to high-temperature components under creep-fatigue loading to demonstrate that these methods can overcome some drawbacks and use improvement potentials of traditional accumulative lifetime methods. Furthermore, damage mechanics models do not provide any reliability information, and the assessment of the resultant lifetime prediction is nearly impossible. At this point, probabilistic methods are used to quantify the missing information concerning failure probabilities and sensitivities and thus, the combination of both provides rigorous information for engineering judgment. Nearly 50 low cycle fatigue experiments of a high chromium cast steel, including dwell times and service-type cycles, are used to investigate the model properties of a simple damage evolution equation using the strain equivalence hypothesis. Furthermore, different temperatures from 300 °C to 625 °C and different strain ranges from 0.35% to 2% were applied during the experiments. The determination of the specimen stiffness allows a quantification of the damage evolution during the experiment. The model parameters are determined by Nelder-Mead optimization procedure, and the dependencies of the model parameters concerning to different temperatures and strain ranges are investigated. In this paper, polynomial chaos expansion (PCE) is used for uncertainty propagation of the model uncertainties while using non-intrusive methods (regression techniques). In a further post-processing step, the computed PCE coefficients of the damage variable are used to determine the probability of failure as a function of cycles and evolution of the probability density function (pdf). Except for the selected damage mechanics model which is considered simple, the advantages of using damage mechanics concepts combined with sophisticated probabilistic methods are presented in this paper.

2000 ◽  
Vol 122 (3) ◽  
pp. 246-255 ◽  
Author(s):  
R. Viswanathan ◽  
J. Stringer

The principal mechanisms of failure of high temperature components include creep, fatigue, creep-fatigue, and thermal fatigue. In heavy section components, although cracks may initiate and grow by these mechanisms, ultimate failure may occur at low temperatures during startup-shutdown transients. Hence, fracture toughness is also a key consideration. Considerable advances have been made both with respect to crack initiation and crack growth by the above mechanisms. Applying laboratory data to predict component life has often been thwarted by inability to simulate actual stresses, strain cycles, section size effects, environmental effects, and long term degradation effects. This paper will provide a broad perspective on the failure mechanisms and life prediction methods and their significance in the context utility deregulation. [S0094-4289(00)00103-1]


Author(s):  
Osamu Watanabe ◽  
Ken-ichi Kobayashi ◽  
Kyotada Nakamura

Cyclic thermal and mechanical loads are frequently applied to power plants during their service lives due to the regular operation of start-up and shutdown. Design or actual lives of these high temperature machines and structures have been mainly dominated by the creep-fatigue failure life. Since most of these failures happen at limited local area, namely, it may happen at the geometrical or material discontinuities in structures or components, the detail inelastic analyses with a conservative margin are required at the design and maintenance. However, much time and colossal effort should be avoided at the stage of development to reduce the total cost of designing because the design changes many times until the final configuration is fixed. Many materials in the high temperature components are subjected to inelastic behaviors; plastic or creep strain always cause in the components. In the computational analyses such as Finite Element Analyses, constitutive equations of both plasticity and creep affect analytical results. Neuber’s rule is employed in the present design code to achieve the simplified design of component but its result sometimes provides more conservative margin. Stress Redistribution Locus (Hereinafter denoted as SRL) method is a simplified inelastic analysis and was developed in Japan. ETD committee in HPI has studied its applicability to basic problems and actual components.


Author(s):  
Vaclav Mentl ◽  
Va´clav Lisˇka ◽  
Jaroslav Koc ◽  
Michal Chocholousˇek

The energy producing power plants are designed for operational period of 20, 30 years. During this period, inspections are realized to investigate the operational capability of the respective components and the plant as a whole, and when the designed time is approaching its limit, the crucial questions are raised with respect to the following possible operation, its safety and risks that stem from the fact that the continuous degradation of material properties occured during the longtime service as a result of service conditions, e.g. high temperatures, fatigue loading etc. The inspection of the boiler and the assessment of its future operational capability should ensure the safe operation and minimazing the failure risks. In comparison with the more sofisticated and much more expensive methods that use numbers of variables that enter the evaluation process of the lifetime exhaustion, or the metallographic non-destructive or even destructive methods that do not result often in a quantitative lifetime assessment, a relatively simple assessment method was used to evaluate the remaining lifetime of the high temperature components. On the basis of accelerated creep test data performed on the degraded materials, the remaining lifetime hours were calculated for the three “safety” situations: 1. “ZERO SAFETY” (neither recommended k = 1, 5 safety coefficient for working stress nor +70deg Celsius increase of working temperature were taken into consideration). 2. “STRESS SAFETY” (1, 5 safety coefficient for working stress and working temperature were taken into consideration). 3. “FULL SAFETY” (1, 5 safety coefficient for working stress and working temperature +70 deg Celsius were taken into consideration). This paper summarizes the results of remaining lifetime calculation for three different cases of steam boilers inspected after longtime service by Skoda Research ltd. Recently. On the basis of performed examination, the results provided the customer the recommendations relating the future safe and reliable operation.


2010 ◽  
Vol 32 (6) ◽  
pp. 971-978 ◽  
Author(s):  
B. Fournier ◽  
M. Salvi ◽  
F. Dalle ◽  
Y. De Carlan ◽  
C. Caës ◽  
...  

2021 ◽  
pp. 146-166
Author(s):  
Arun Sreeranganathan ◽  
Douglas L. Marriott

Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.


2015 ◽  
Vol 81 (829) ◽  
pp. 15-00243-15-00243 ◽  
Author(s):  
Tadashi MASUOKA ◽  
Yutaka TOI ◽  
Hideshi KAGAWA ◽  
Hirohide IKEDA

Author(s):  
Wen Wang ◽  
Xiaochun Zhang ◽  
Xiaoyan Wang ◽  
Maoyuan Cai

Abstract The structural integrity of reactor components is very essential for the reliable operation of all types of power plants, especially for components operating at elevated temperature where creep effects are significant and where components are subjected to high-temperature alteration and seismic transient loading conditions. In this article, a molten salt storage tank in high temperature thorium molten salt reactor (TMSR) is evaluated according to ASME-III-5-HBB high temperature reactor code. The evaluation based on 3D finite element analyses includes the load-controlled stress, the effects of ratcheting, and the interaction of creep and fatigue. The thermal and structural analysis and the application procedures of ASME-HBB rules are described in detail. Some structural modifications have been made on this molten salt storage tank to enhance the strength and reduce thermal stress. The effects of ratcheting and creep-fatigue damage under elevated temperature are investigated using elastic analysis and inelastic analysis methods for a defined representative load cycle. In addition, the strain range and the stress relaxation history calculated by elastic and inelastic methods are compared and discussed. The numerical results indicate that the elastic analysis is conservative for design and a full inelastic analysis method for estimating input for creep-fatigue damage evaluation need to be developed.


2003 ◽  
Vol 38 (2) ◽  
pp. 125-132 ◽  
Author(s):  
S-T Tu ◽  
X Ling

The creep damage behaviour of two-bar structures of different dimensions and materials is studied in terms of continuum damage theory. The basic model is used to interpret the effectiveness of life extension measures for complicated structures. It is found that replacement of the more damaged component prior to rupture will result in an optimized life extension efficiency, depending on the geometric or material difference between the damaged and less damaged components. This has potential to provide guidance on the effectiveness of life extension repairs in high-temperature plants.


Sign in / Sign up

Export Citation Format

Share Document