scholarly journals Mode I Crack Propagation Experimental Analysis of Adhesive Bonded Joints Comprising Glass Fibre Composite Material under Impact and Constant Amplitude Fatigue Loading

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4380
Author(s):  
Alirio Andres Bautista Villamil ◽  
Juan Pablo Casas Rodriguez ◽  
Alicia Porras Holguin ◽  
Maribel Silva Barrera

The T-90 Calima is a low-wing monoplane aircraft. Its structure is mainly composed of different components of composite materials, which are mainly bonded by using adhesive joints of different thicknesses. The T-90 Calima is a trainer aircraft; thus, adverse operating conditions such as hard landings, which cause impact loads, may affect the structural integrity of aircrafts. As a result, in this study, the mode I crack propagation rate of a typical adhesive joint of the aircraft is estimated under impact and constant amplitude fatigue loading. To this end, effects of adhesive thickness on the mechanical performance of the joint under quasistatic loading conditions, impact and constant amplitude fatigue in double cantilever beam (DCB) specimens are experimentally investigated. Cyclic impact is induced using a drop-weight impact testing machine to obtain the crack propagation rate (da/dN) as a function of the maximum strain energy release rate (GImax) diagram; likewise, this diagram is also obtained under constant amplitude fatigue, and both diagrams are compared to determine the effect of each type of loading on the structural integrity of the joint. Results reveal that the crack propagation rate under impact fatigue is three orders of magnitude greater than that under constant amplitude fatigue.

2011 ◽  
Vol 462-463 ◽  
pp. 657-662
Author(s):  
K.A. Zakaria ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali

Fatigue in materials is caused by repeated loading and unloading cycles below the ultimate strength of a material. Fatigue tests are expensive since they required a lot of time consuming. Simulation of fatigue crack propagation using commercial software can reduce the costs related to time. The purpose of this study is to compare the fatigue crack propagation in metal under variable and constant amplitude loading. A standard size of aluminum cast alloy specimen according to ASTM E647 document was modelled using a pre-processor and it was later being analysed. In another aspect, strain gauges were attached to an engine mounting bracket and connected to the data acquisition set in order to capture the actual strain signals when an automobile was driven on to different road conditions. For the simulation purpose, a constant amplitude loading was then derived from a variable amplitude loading obtained from the data capturing process. The related parameters on between different road conditions, variable and constant amplitude loadings and crack propagation rate were presented. The relationship between those parameters were finally correlated and discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinhu Zhang ◽  
Zhao Wang ◽  
Yongbo XI ◽  
Wenbo Liu ◽  
Yongjun Deng ◽  
...  

A 3-dimensional (3D) fuel performance analysis program, able to simulate normal operating conditions and accident conditions for PWR fuel behaviors, was developed based on the Multiphysics Object-Oriented Simulation Environment (MOOSE) finite-element framework. By taking fission products swelling, densification and expansion of pellet, thermal and irradiation creep, gap heat transfer, fission gas release, and cladding crack propagation into consideration, detailed fuel behaviors have been simulated in a multiphysics coupling way. Local defects in fuel pellet caused during manufacturing and filling processes known as the missing pellet surface (MPS) can cause abnormal stress distribution of the cladding and it could even lead to cladding failure. Taking Stress Corrosion Cracking (SCC) phenomenon into consideration, a simulation of PWR fuel rodlet that consists of a pellet with an MPS defect and an intact pellet was conducted. The fuel rod has experienced with sorts of events, including normal operating conditions and a high-power ramp event. The simulation results indicated that: 1) The MPS defect affects the temperature and displacement distribution in the vicinity of the MPS defect. When the pellets are in contact with the cladding, the inner surface of the cladding presents a large tensile hoop stress, which accelerates the crack propagation. 2) During the ramp event, the crack propagation rate was higher than that under normal condition and crack length expanded by about 0.1 µm.


Author(s):  
A.S. Sotnikov

The process models of iodine corrosion cracking of zirconium fuel claddings, used to calculate the durability of the cladding (time for loss of tightness) are considered. A method for determining the corrosion crack propagation rate in claddings made of E110 alloy Ø 9.1 × 0.65 mm and the results of corresponding studies (estimation of corrosion crack propagation rate and stress intensity factor KISCC) are given at a temperature of 380 °C in iodine environment at a concentration of ~ 0.2 mg/cm2. Studies were performed using tubular samples with a fatigue crack. A fatigue crack on the inner surface of cladding made of E110 Ø 9.1 × 0.65 mm alloy is the initiator of a corrosion crack emergence (nucleation). The results of corresponding studies are consistent with data from the literature. The proposed study of the corrosion cracking process of fuel claddings in accordance with the results of fracture mechanics is of practical importance for substantiation of the regulation of reactor operating conditions


2018 ◽  
Vol 165 ◽  
pp. 13012
Author(s):  
Christian Busse ◽  
Frans Palmert ◽  
Paul Wawrzynek ◽  
Björn Sjödin ◽  
David Gustafsson ◽  
...  

Single-crystal nickel-base superalloys are often used in the hot sections of gas turbines due to their good mechanical properties at high temperatures such as enhanced creep resistance. However, the anisotropic material properties of these materials bring many difficulties in terms of modelling and crack growth prediction. Cracks tend to switch cracking mode from Mode I cracking to crystallographic cracking. Crystallographic crack growth is often associated with a decrease in crack propagation life compared to Mode I cracking and this must be taken into account for reliable component lifing. In this paper a method to evaluate the crystallographic crack propagation rate related to a crystallographic crack driving force parameter is presented. The crystallographic crack growth rate is determined by an evaluation of heat tints on the fracture surface of a specimen subjected to fatigue loading. The complicated crack geometry including two crystallographic crack fronts is modelled in a three dimensional finite element context. The crack driving force parameter is determined by calculating anisotropic stress intensity factors along the two crystallographic crack fronts by finite-element simulations and post-processing the data in a fracture mechanics tool that resolves the stress intensity factors on the crystallographic slip planes in the slip directions. The evaluated crack propagation rate shows a good correlation for both considered crystallographic cracks fronts.


1967 ◽  
Vol 89 (1) ◽  
pp. 55-68 ◽  
Author(s):  
R. Plunkett ◽  
N. Viswanathan

Fatigue-crack-propagation rates have been measured for 2024-T3 aluminum cantilever beams in reversed bending under constant amplitude, two-level constant amplitude, and random excitations. For the two-level tests there is a large interaction between the crack-propagation rates caused by stress cycles of different amplitudes. The high-low sequence gives a delay and the low-high sequence a higher rate than a simple no interaction assumption would predict. This is confirmed in the random-excitation tests where the crack-propagation rate for low damping is much higher than that for high damping for exactly the same distribution and level of stress peaks.


2006 ◽  
Vol 519-521 ◽  
pp. 1065-1070
Author(s):  
J. Heidemann ◽  
J. Albrecht ◽  
G. Lütjering

The influence of variable amplitude loading on fatigue crack propagation was investigated for two high purity versions of the alloy Al 2024 in sheet form, one with fine equiaxed grains, and the other with coarse elongated grains. Fatigue tests on center cracked specimens were conducted in vacuum at constant amplitude (R-ratio of 0.1) and with periodically applied single tensile overloads with an overload ratio of 1.5. The number of intermittent baseline cycles between consecutive overloads was varied (n=100 and n=10.000). Detailed fractographic investigations were carried out for the identification of changes in the fracture surfaces due to the overloads. Crack closure measurements were performed in all cases. The results revealed a strong influence of the overloads on the crack propagation rate. Whether overloads are retarding or accelerating the fatigue crack propagation depends on the crack propagation mechanism at constant amplitude loading and the number of intermittent baseline cycles. For n=100 retardation occurred for the fine grained alloy exhibiting homogeneous slip at constant amplitude while acceleration was observed for the alloy with coarse elongated grains showing pronounced slip band fracture at constant amplitude. For n=10.000, the formation of steps parallel to the direction of crack propagation by overloads is assumed to be the reason for the observed increase in fatigue crack propagation resistance resulting in retardation for both alloys compared to constant amplitude and n=100. The influence of crack closure on the overload effects was minor. This was verified by additional tests at R=0.5.


2010 ◽  
Vol 97-101 ◽  
pp. 852-855
Author(s):  
Yu Ting He ◽  
Wen Jun Shu ◽  
Ren Yu Liu ◽  
Rong Hong Cui

The equation of fatigue crack propagation rate is indispensable to precisely predict the fatigue life of structure containing three-dimensional crack under constant amplitude loading. Considering the crack closure effects and thickness effects in real structures, the equation of fatigue crack propagation rate under tri-axial stress state is presented. And the fatigue propagation lives of LY12-BCZYU aluminium alloy plate specimens with central through crack are predicted by this equation and validated by experimental results. Validation against calculations by the model and experimental data shows a good agreement.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


Sign in / Sign up

Export Citation Format

Share Document