Well Test Analysis for Two-Phase Flow of Non-Newtonian Power-Law and Newtonian Fluids

1984 ◽  
Vol 106 (2) ◽  
pp. 295-305 ◽  
Author(s):  
C. S. Gencer ◽  
C. U. Ikoku

Analysis of injectivity and falloff test data is considered during two-phase flow of non-Newtonian and Newtonian fluids. The non-Newtonian fluids considered are power-law fluids. Two sets of relative permeability data representing preferentially water wet and oil wet systems are considered. The conditions under which saturation gradients develop are thoroughly investigated. The effects of finite radius skin region and rock compressibility on pressure response are also investigated. During two-phase flow of power-law and Newtonian fluids, saturation gradients do not develop under most practical conditions. Injectivity and falloff data can be analyzed using available techniques with appropriate definitions of dimensionless variables for two-phase flow. When saturation gradients exist, the response of this transition region is not interpretable by available methods.

Author(s):  
Abdalsalam Ihmoudah ◽  
Mohamed M. Awad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt

Abstract Two-phase flow of gas/yield power-law (YPL) fluids in pipes can be found in a wide range of practical and industrial applications. To improve the understanding of the effects of rheological parameters of non-Newtonian liquids in a two-phase model, experimental and Computational Fluid Dynamics (CFD) investigations of gas/yield power-law fluids in a horizontal pipe were carried out. Two Xanthan gum (XG) solutions at concentrations of (0.05% and 0.10% by weight) were used as the working liquids. The experiments were conducted in a flow loop in a 65-m open-cycle system. The horizontal test section had a diameter of 3 inches (76.2 mm). The transient calculations were conducted using a Volume of Fluid (VOF) model in ANSYS Fluent version 17.2. Slug flow characteristics were recorded and observed by a high-speed digital camera in different operating conditions. The slug velocity and slug frequency were investigated experimentally and numerically, and a comparison of results with empirical relationships found in the literature was performed. We observed that the rheological properties of non-Newtonian phase influence the flow behavior in two-phase flow with increasing XG concentrations. The results of the empirical correlation to measure the slug frequency of a gas/non-Newtonian with considered the rheology of the shear-thinning behaver gave acceptable agreement with numerical measurements at low polymer concentration. The effect of liquid superficial velocity on slug translational velocity at low gas superficial velocity was relatively high.


Author(s):  
Faraj Ben Rajeb ◽  
Mohamed Odan ◽  
Amer Aborig ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
...  

Abstract Two-phase flow of gas/Newtonian and gas/non-Newtonian fluid through pipes occurs frequently in the chemical industry as well as in petroleum refining. Extensive experimental and theoretical research has been carried out on these systems in order to better understand their behaviour under different conditions regarding pressure, temperature and mixture concentrations. In this study, experimental apparatuses are used to investigate two-phase flow of gas/liquid systems through pipes. Air is used as the gas in the experiments, while water is used as the Newtonian fluid and Xanthan gum as the non-Newtonian fluid. The objectives of the study are to compare pressure drops when the same gas flows simultaneously with Newtonian and non-Newtonian fluids through tubes. The comparison here is between experimental pressure drops and estimated pressure drops, based on available empirical correlations for gas/Newtonian and gas/non-Newtonian flow. The trend exhibited by the pressure drops in both systems helps us to better understand the relationship between mixture flow pressure drops in Newtonian and non-Newtonian fluids and thereby develop a new experimental model. The tube diameter for the flow loop is 3/4 inch and the flow type ranges from transient to turbulent.


Author(s):  
Abdalsalam Ihmoudah ◽  
Mohamed M. Awad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt

Abstract Two-phase flow of gas/yield Pseudoplastic fluids can be found in different industrial applications like the chemical processes, oil industry, and petroleum transport in pipelines. In this study, experimental and numerical investigation of the influence of Rheological properties of non-Newtonians fluids in two-phase flow (gas/yield Pseudoplastic fluids) on slug characteristics in an upward vertical flow were performed. Different concentrations of Xanthan gum solutions (0.05%, 0.10%, and 0.15%, by w/w), which are referred to as non-Newtonian, yield Pseudoplastic behavior used as the working liquids and air as a gas. The experiments were conducted in an open-loop re-circulating system has a total length of 65 m to ensure phase mixing, and authorize flow regime patterns to develop. The vertical pipe has a diameter of 76.3 mm. API-compliant 8-speed rotational viscometer model 800 was used to measure the rheological properties of non-Newtonian fluids. Flow visualization and recording videos were achieved by A high-speed camera to a comparison between behavior of Newtonian and non-Newtonian fluids in the two-phase model. Pressure transducers used to measure high-response pressure. Computational fluid dynamics software (ANSYS fluent 2019 R3) was used for the numerical investigation. The volume of fluid (VOF) model has been chosen for tracking immiscible fluids. CFD simulation results compared to the experimental data. The slug behavior and shape were noticed to be affected by changing the rheological properties of the liquid phase. with increasing XG concentration at the same operations conditions, we found that non-uniform and random distribution of small bubbles due to the effective viscous force of a liquid phase.


Author(s):  
W. G. Sim ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

To understand the fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. The distributions of flow parameters across a pipe, such as gas velocity, liquid velocity and void fraction, may be assumed to follow a power law (Cheng 1998, Serizawa et al. 1975). The void fraction profile is, for example, uniform for bubbly flow while it is more or less parabolic for slug flow. In the present work, the average values of momentum flux, slip ratio, etc. are derived by integral analysis, based on approximate power law distributions. A parametric study with various distributions was performed. The existing empirical formulations for average void fraction, proposed by Wallis (1969), Zuber et al. (1967) and Ishii (1970), are considered to obtain the present results. In particular, the unsteady momentum flux for slug flow is approximated.


1998 ◽  
Vol 543 ◽  
Author(s):  
L. Kondic ◽  
P. Fast ◽  
M. J. Shelley

AbstractThe flow of a fluid confined between two solid plates (Hele-Shaw cell) is of considerable interest in a variety of applications. Further interest in two phase flow in this geometry stems from the close analogy between the dynamics of fluid-fluid interface and the propagation of the solidification front. While the flow of Newtonian fluids is rather well understood, it is much more complicated to compute flows of non-Newtonian fluids. We find that the dense-branching morphology of Newtonian liquids may be replaced by dendritic fingers with stable tips and sidebranches, and discuss resulting length scales.


2012 ◽  
Vol 5 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Freddy-Humberto Escobar ◽  
Laura-Jimena Vega ◽  
Luis-Fernando Bonilla

Since conventional oil is almost depleted, oil companies are focusing their efforts on exploiting heavy oil reserves. A modern and practical technique using the pressure and pressure derivative, log-log plot for estimating the well-drainage area in closed and constant-pressure reservoirs, drained by a vertical well is presented by considering a non-Newtonian flow model for describing the fluid behavior. Several synthetic examples were presented for demonstration and verification purposes.Such fluids as heavy oil, fracturing fluids, some fluids used for Enhanced Oil Recovery (EOR) and drilling muds can behave as either Power-law or Bingham, usually referred to as the non-Newtonian fluids. Currently, there is no way to estimate the well-drainage area from conventional well test analysis when a non-Newtonian fluid is dealt with; therefore, none of the commercial well test interpretation package can estimate this parameter (drainage area).


Sign in / Sign up

Export Citation Format

Share Document