The Production of Jet Fuel From Alternative Sources

1986 ◽  
Vol 108 (4) ◽  
pp. 641-647 ◽  
Author(s):  
H. R. Lander ◽  
H. E. Reif

The most significant potential source of aviation gas turbine fuels in the continental United States is the western oil shale located in the Rocky Mountain States of Colorado, Utah, and Wyoming. Nearly 600 billion barrels of recoverable oil is located in this area. This paper discusses the availability of oil shale and reviews the recovery, upgrading and refining schemes necessary to produce fuel which can be used in present-day aircraft. Other synthetic fuels are discussed with regard to the processing necessary to produce suitable fuels for today’s high-performance aircraft. Heavy oil and tar sand bitumen are likely to be refined in the next decade. Methods for producing suitable fuels are discussed. The chemical structure of these sources, which is basically cyclic, leads to the potential for heavier fuels with more energy per given volume and therefore longer range for certain aircraft. This exciting possibility is reviewed.

Author(s):  
Herbert R. Lander ◽  
Henry E. Reif

The most significant potential source of aviation gas turbine fuels in the continental United States of America is the western oil shale located in the Rocky Mountain States of Colorado, Utah, and Wyoming. Nearly 600 billion barrels of recoverable oil is located in this area. This paper discusses the availability of oil shale and reviews the recovery, upgrading and refining schemes necessary to produce fuel which can be used in present-day aircraft. Other synthetic fuels are discussed with regard to the processing necessary to produce suitable fuels for today’s high performance aircraft. Heavy oil and tar sand bitumen are likely to be refined in the next decade. Methods for producing suitable fuels are discussed. The chemical structure of these sources, which is basically cyclic, leads to the potential of heavier fuels with more energy per given volume and therefore longer range for certain aircraft. This exciting possibility is reviewed.


Author(s):  
C. L. Delaney

In June 1980, the United States Congress passed the Energy Security Act which provided for the formation of the United States Synthetic Fuels Corporation and amended the Defense Production Act of 1950 to provide for synthetic fuels for the Department of Defense (DOD). A subsequent law, P.L., 96-304, appropriated up to $20 billion for financial incentives to foster a national synthetic fuel industry. The initial synthetic fuel project funded under the Energy Security Act is the Unocal Parachute Creek Project in Colorado with an expected shale oil production of 10,000 bbls/day. The Defense Fuel Supply Center (DFSC) contracted with Gary Energy Refining Company, Fruita, Colorado to provide approximately 5000 bbls/day of shale JP-4 for the United States Air Force (USAF) using crude from the Parachute Creek project, with initial deliveries to begin in 1985. The USAF immediately accelerated preparations for the eventual operational use of shale derived fuels for turbine engine aircraft. An extensive test and evaluation program was initiated consisting of aviation turbine fuel processing, fuel characterization, aircraft component and subsystem testing, engine and flight testing. This paper describes the testing program that was accomplished, the significant results which were determined and the quality assurance program that is being implemented to assure that the shale fuel meets the requirements of JP-4, the standard USAF jet fuel.


2019 ◽  
Vol 19 (3) ◽  
pp. 238-257
Author(s):  
Suresh Antony

Background:In the United States, tick-borne illnesses account for a significant number of patients that have been seen and treated by health care facilities. This in turn, has resulted in a significant morbidity and mortality and economic costs to the country.Methods:The distribution of these illnesses is geographically variable and is related to the climate as well. Many of these illnesses can be diagnosed and treated successfully, if recognized and started on appropriate antimicrobial therapy early in the disease process. Patient with illnesses such as Lyme disease, Wet Nile illness can result in chronic debilitating diseases if not recognized early and treated.Conclusion:This paper covers illnesses such as Lyme disease, West Nile illness, Rocky Mountain Spotted fever, Ehrlichia, Tularemia, typhus, mosquito borne illnesses such as enteroviruses, arboviruses as well as arthropod and rodent borne virus infections as well. It covers the epidemiology, clinical features and diagnostic tools needed to make the diagnosis and treat these patients as well.


Author(s):  
Kathryn T Duncan ◽  
Meriam N Saleh ◽  
Kellee D Sundstrom ◽  
Susan E Little

Abstract Throughout North America, Dermacentor spp. ticks are often found feeding on animals and humans, and are known to transmit pathogens, including the Rocky Mountain spotted fever agent. To better define the identity and distribution of Dermacentor spp. removed from dogs and cats in the United States, ticks submitted from 1,457 dogs (n = 2,924 ticks) and 137 cats (n = 209 ticks) from veterinary practices in 44/50 states from February 2018-January 2020 were identified morphologically (n = 3,133); the identity of ticks from regions where Dermacentor andersoni (Stiles) have been reported, and a subset of ticks from other regions, were confirmed molecularly through amplification and sequencing of the ITS2 region and a 16S rRNA gene fragment. Of the ticks submitted, 99.3% (3,112/3,133) were Dermacentor variabilis (Say), 0.4% (12/3,133) were D. andersoni, and 0.3% (9/3,133) were Dermacentor albipictus (Packard). While translocation of pets prior to tick removal cannot be discounted, the majority (106/122; 87%) of Dermacentor spp. ticks removed from dogs and cats in six Rocky Mountain states (Montana, Idaho, Wyoming, Nevada, Utah, and Colorado) were D. variabilis, suggesting this species may be more widespread in the western United States than is currently recognized, or that D. andersoni, if still common in the region, preferentially feeds on hosts other than dogs and cats. Together, these data support the interpretation that D. variabilis is the predominant Dermacentor species found on pets throughout the United States, a finding that may reflect recent shifts in tick distribution.


2014 ◽  
Vol 93 ◽  
pp. 164-167 ◽  
Author(s):  
Joon Won Lim ◽  
Atta Ul Haq ◽  
Sang Ouk Kim

Polymer grafting from graphitic carbon materials has been explored for several decades. Currently existing methods mostly employ harsh chemical treatment to generate defect site in graphitic carbon plane, which are used as active site for polymerization of precursors. Unfortunately, the treatment cause serious degradation of chemical structure and material properties. Here, we present a straightforward route for growth of polyaniline chain from nitrogen (N)-sites of carbon nanotubes. N site in the CNT wall initiates the polymerization of aniline monomer, which generates seamless hybrids composed of polyaniline directly grafted onto the CNT walls. The synthesized hybrids show excellent synergistic electrochemical performance, and are employed for electrodes of pseudo-capacitor. This approach offers an efficient way to obtain hybrid system consisting of conducting polymers directly grafted from graphitic dopant sites.


Author(s):  
Hsiu-Chuan Yen ◽  
Yi-Tzu Hsu

AbstractHigh-performance liquid chromatography (HPLC) with electrochemical detection was used to analyze lipidsoluble antioxidants and micronutrients in plasma. Small amounts of plasma samples are often extracted in polypropylene (PP) microcentrifuge tubes before HPLC analysis due to its convenience. We therefore investigated the effect of impurities released from different PP tubes during extraction on the electrochemical detection of retinol, lutein, α-tocopherol, γ-tocopherol, retinyl palmitate, β-carotene and total coenzyme Q


Author(s):  
Anggia Murni ◽  
Novriyandi Hanif ◽  
Masaki Kita ◽  
Latifah K. Darusman

Objective: To isolate and elucidate a cytotoxic principle against breast tumor MCF-7 cells of the Indonesian terrestrial plant Ficus deltoidea Jack leaves.Methods: F. deltoidea leaves collected at National Park of mount Gede-Pangrango, Indonesia have been subjected to chemical and biological work. F. deltoidea leaves were extracted with 96% aqueous ethanol (EtOH) and was then partitioned into three layers n-hexane, dichloromethane (CH2Cl2), and n-butanol (n-BuOH). All layers were checked for their activity against breast tumor MCF-7 cells using MTT assay method. A portion of the most active layer was purified using open column chromatography to give fraction that has toxicity against zebra fish embryos. Based on the assay-guided isolation, compound 1 was isolated. The chemical structure of 1 was elucidated using nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) data as well as comparing data with literature.Results: The CH2Cl2 layer of F. deltoidea leaves was found to inhibit breast tumor MCF-7 cells with IC50 10 µg/ml which was the most toxic among the layers. A portion of the most active layer was purified using open column chromatography to give 7 fractions. The fraction 5 showed toxicity against zebrafish embryos (LC50 35 µg/ml, 48 hpf). This fraction was purified using high performance liquid chromatography (HPLC) octadecylsilyl (ODS) column with gradient elution 70% aqueous acetonitrile (MeCN) to 100% MeCN (linear gradient) for 40 min with UV detection at 254 nm (tR = 30.99 min) to give compound 1. The chemical structure of 1 was revealed as a chlorin-type compound named methyl 10-epi-pheophorbide A.Conclusion: Methyl 10-epi-pheophorbide A was isolated for the first time from the active fraction of the Indonesian F. deltoidea leaves or tabat barito. The chemical structure including absolute stereo chemistry was elucidated using NMR and HRMS data as well as by comparison with the literature values. The 13C NMR data has been added to complete the previous report.


2021 ◽  
Author(s):  
Nawa Raj Baral ◽  
Minliang Yang ◽  
Benjamin G. Harvey ◽  
Blake A Simmons ◽  
Aindrila Mukhopadhyay ◽  
...  

<div> <div> <div> <p>Near-term decarbonization of aviation requires energy-dense, renewable liquid fuels. Biomass- derived 1,4-dimethylcyclooctane (DMCO), a cyclic alkane with a volumetric net heat of combustion up to 9.2% higher than Jet-A, has the potential to serve as a low-carbon, high- performance jet fuel blendstock that may enable paraffinic bio-jet fuels to operate without aromatic compounds. DMCO can be produced from bio-derived isoprenol (3-methyl-3-buten-1- ol) through a multi-step upgrading process. This study presents detailed process configurations for DMCO production to estimate the minimum selling price and life-cycle greenhouse gas (GHG) footprint considering three different hydrogenation catalysts and two bioconversion pathways. The platinum-based catalyst offers the lowest production cost and GHG footprint of $9.0/L-Jet-Aeq and 61.4 gCO2e/MJ, given the current state of technology. However, when the conversion process is optimized, hydrogenation with a Raney nickel catalyst is preferable, resulting in a $1.5/L-Jet-Aeq cost and 18.3 gCO2e/MJ GHG footprint if biomass sorghum is the feedstock. This price point requires dramatic improvements, including 28 metric-ton/ha sorghum yield and 95-98% of the theoretical maximum conversion of biomass-to-sugars, sugars-to-isoprenol, isoprenol-to-isoprene, and isoprene-to-DMCO. Because increased gravimetric energy density of jet fuels translates to reduced aircraft weight, DMCO also has the potential to improve aircraft efficiency, particularly on long-haul flights. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document