A Method of Evaluating Life Cycle Costs of Industrial Gas Turbines

1989 ◽  
Vol 111 (4) ◽  
pp. 637-641
Author(s):  
R. B. Spector

When aeroderivative gas turbines were first introduced into industrial service, the prime criterion for assessing the “relative value” of equipment was derived by dividing the initial (or capital) cost of the equipment by the number of kilowatts produced. The use of “dollars per kilowatt” as an assessment parameter emanated from the utility sector and is still valid providing that the turbomachinery units under consideration possess similar performance features with regard to thermal efficiency. Second-generation gas turbines being produced today possess thermal efficiencies approximately 45 percent greater than those previously available. Thus, a new criterion is required to provide the purchaser with a better “value” perspective to differentiate the various types of turbomachinery under consideration. This paper presents a technique for combining the initial cost of equipment with the costs of fuel consumed, applied labor, and parts to arrive at an assessment parameter capable of comparing the relative merits of varying types of turbomachinery. For simplicity, this paper limits the life cycle cost derivation and discussion to turbogenerator units; however, the principles of this type of life cycle analysis can also be applied to gas turbines in mechanical drive applications and/or combined cycles.

Author(s):  
R. B. Spector

When aero-derivative gas turbines were first introduced into industrial service, the prime criterion for assessing the “relative value” of equipment was derived hy dividing the initial (or capital) cost of the equipment by the number of kilowatts produced. The use of “dollars per kilowatt” as an assessment parameter emanated from the utility sector and is still valid providing that the turbo-machinery units under consideration possess similar performance features with regard to thermal efficiency. Second generation gas turbines being produced today possess thermal efficiencies approximately forty-five percent greater than those previously available. Thus, a new criterion is required to provide the purchaser with a better “value” perspective to differentiate the various types of turbo-machinery under consideration. This paper presents a technique of combining the initial cost of equipment with the costs of fuel consumed, applied labor and parts to arrive at an assessment parameter capable of comparing the relative merits of varying types of turbo-machinery. For simplicity, this paper limits the life cycle cost derivation and discussion to turbo-generator units; however, the principles of this type of life cycle analysis can also be applied to gas turbines in mechanical drive applications and/or combined cycles.


Author(s):  
Laxman Y. Waghmode ◽  
Ravindra S. Birajdar ◽  
Shridhar G. Joshi

It is well known that the pumps are the largest consumers of industrial motor energy and account for more than 25% of electricity consumption. The life cycle cost of a pump is the total lifetime cost associated with procurement, installation, operation, maintenance and its disposal. For majority of heavy usage pumps, the lifetime energy and/or maintenance cost will dominate the life cycle costs. Hence a greater understanding of all the cost components making up the total life cycle costs should provide an opportunity to achieve a substantial savings in energy and maintenance costs. This will further enable optimizing pumping system efficiency and improving pump and system reliability. Therefore in this context, the life cycle cost analysis of heavy usage pumps is quite important. This paper focuses on an application of a methodology of determining the life cycle cost of a typical heavy usage multistage centrifugal pump. In this case, all the cost components associated with the pump-set have been determined and classified under different categories. The data with regard to initial investment costs, operation costs, maintenance and repair costs and disposal costs for the pump considered for this case study was collected from the concerned pump manufacturer along with the unit cost of each component, quantity used and their weights. By applying the principles of reliability and maintainability engineering and using the data obtained from the design, manufacturing and maintenance departments, the component-wise values of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) were estimated. The results of the life cycle cost analysis of the specimen pump were compared with the life cycle costs of similar pumps reported in the literature. From this comparison of results, it can be concluded that, the initial cost of the pump is the only a fraction of the total life cycle cost. The operating cost of the pump dominates the life cycle costs especially in case of heavy usage pumps. The maintenance cost varies approximately from 0.6 to 2.5 times the initial cost of the pump. The life cycle cost of the pump varies approximately from 12 to 33 times the initial cost of the pump. The operation and maintenance cost is almost 92 to 97 per cent of the life cycle cost. The detailed analysis carried out in this paper is expected to provide guidelines to the pump manufactures/practicing engineers in selecting a heavy usage multistage centrifugal pump based on the total lifetime cost rather than only on initial price.


1973 ◽  
Vol 10 (03) ◽  
pp. 270-283
Author(s):  
R. Bruce Woodruff

Heavy-duty industrial gas turbines are suggested as an alternative propulsion plant to consider for ships, particularly ships of large displacement that are not volume limited. This paper examines the use of such a plant in a naval auxiliary, the Fast Combat Support Ship (AOE-1, Sacramento Class). The cycle discussed is of the combined gas turbine and steam cycle. The inlet to the compressor is supercharged and then intercooled, allowing the gas turbine to perform at significantly higher than rated power levels. Two controllable-pitch propellers at 50,000 shp each are used to drive the ship. Exhaust from the turbine is used to generate steam in an unfired waste-heat boiler. Reliability, maintainability, life-cycle costs and manning are addressed for comparison with the presently installed steam plant.


Author(s):  
Igor S. Ondryas

In the increasingly competitive global marketplace the users of industrial products face the challenge of predicting accurate life-cycle costs of their equipment and machinery. The deregulation of many industries resulted in inability of operating companies to pass over to the customer the increased costs of their products, which may have been caused by inaccurate predictions of the equipment operating costs. This evolution in the 1980’s have emphasized the need for accurate predictions of the equipment operating costs and have meant the difference between profit and loss. This paper presents the concept of equipment Durability to be used in the process of evaluation the equipment life cycle cost and subsequent equipment selection. It is also the first part or primer to the paper which describes the Durability Surveillance Program on the Advanced Gas Turbines sponsored by EPRI titled “Durability Surveillance Program on the Advanced Gas Turbine GE Frame 7 F” (1).


Author(s):  
Stéphane Gayraud ◽  
Riti Singh

The growing desire for sponsors of power generation projects to share risk with the lenders has promoted the use of computational tools, simulating and evaluating from a techno-economic viewpoint long-term, high-risk projects. Such models need to include reliable engine diagnostics, life-cycle costing and risk analysis technique. This paper presents a Decision Support System (DSS) for the assessment of power generation projects using industrial gas turbines. The software, programmed in Visual Basic in Excel, runs the object-oriented software Pythia which has been developed by the Department of Propulsion, Power and Automotive Engineering at Cranfield University and which can perform gas turbine performance calculations, including off-design conditions, with or without degradation effects providing thus very reliable engine diagnostics. Moreover, a life cycle cost, assessed using manufacturer methodology for instance, can be integrated into the economic model. The degree of uncertainty relating to technical and economic factors is assessed using a normal distribution and the level of risk can then be evaluated using a risk analysis technique based upon the Monte Carlo Method. The DSS therefore provides charts and result tables to support the decision making, allowing the user to achieve a good level of confidence using new techniques of risk management.


2021 ◽  
Vol 13 (12) ◽  
pp. 6974
Author(s):  
Charlotte Cambier ◽  
Waldo Galle ◽  
Niels De De Temmerman

In addition to the environmental burden of its construction and demolition activities, the Flemish housing market faces a structural affordability challenge. As one possible answer, this research explores the potential of so-called expandable houses, being built increasingly often. Through specific design choices that enable the disassembly and future reuse of individual components and so align with the idea of a circular economy, expandable houses promise to provide ever-changing homes with a smaller impact on the environment and at a lower cost for clients. In this paper, an expandable house suitable for various housing needs is conceived through a scenario-based research-by-design approach and compared to a reference house for Flanders. Subsequently, for both houses the life cycle costs are calculated and compared. The results of this exploration support the proposition that designing expandable houses can be a catalyst for sustainable, circular housing development and that households could benefit from its social, economic and ecological qualities. It requires, however, a dynamic perspective on evaluating their life-cycle impact.


2021 ◽  
Author(s):  
Amir Fereidouni Kondri

This report presents the methodology for determining least cost energy efficient upgrade solutions in new residential housing using brute force sequential search (BFSS) method for integration into the reference house to reduce energy consumption while minimizing the net present value (NPV) of life cycle costs. The results showed that, based on the life cycle cost analysis of 30 years, the optimal upgrades resulted in the average of 19.25% (case 1), 31% (case 2a), and 21% (case 2b) reduction in annual energy consumption. Economic conditions affect the sequencing of the upgrades. In this respect the preferred upgrades to be performed in order are; domestic hot water heating, above grade wall insulation, cooling systems, ceiling insulation, floor insulation, heat recovery ventilator, basement slab insulation and below grade wall insulation. When the gas commodity pricing becomes high, the more energy efficient upgrades for domestic hot water (DHW) get selected at a cost premium.


2015 ◽  
Vol 31 (4) ◽  
pp. 1969-1990 ◽  
Author(s):  
T. Y. Yang ◽  
M. Murphy

Steel is one of the most popular seismic force–resisting systems (SFRS) in use worldwide. In Canada, several SFRS have been prequalified for use in the national and provincial building codes. The design of each SFRS has been covered comprehensively in literature. However, no guidance has been provided in selecting the optimum system for a project. In this paper, a prototype building located in Vancouver, Canada, was designed nine times to utilize each of the prequalified SFRS. Detailed seismic hazard and finite element models were developed for each system. The performance in terms of initial construction and life-cycle cost was used to rank each SFRS. The result of this analysis shows that the eccentrically braced configuration has the lowest material usage and life cycle maintenance cost; it is therefore the most economic system in this study. The presented methodology is transparent and can be easily adopted by engineers to select the most economic seismic system for projects with different configurations and geometries than those given in this research. Furthermore, this system introduces a metric with which to estimate the life-cycle costs of a structure taking into account seismic damage over the service life.


Author(s):  
A. J. Schuetz

A conceptual design study has been conducted for an all-new, land-based patrol aircraft for the U.S. Navy. The selected propulsion system was a conceptual high-speed turboprop. An antisubmarine warfare mission was chosen for the design flight profile. Probable peacetime utilization was postulated so that the engine duty cycle could be estimated. Aircraft designs were optimized for minimum takeoff gross weight (TOGW) and for minimum life cycle cost (LCC). It was shown that the aircraft performance requirements and design constraints bound the optimization process so tightly that the same point design is obtained for both TOGW and LCC criteria. The contribution of the engine costs to the overall life cycle costs was examined. The sensitivity of the aircraft optimization to the engine characteristics — specific fuel consumption (SFC), length, diameter, and cost — was analyzed. It was determined that SFC is the most significant engine characteristic.


Sign in / Sign up

Export Citation Format

Share Document