Natural Convection on Both Sides of a Vertical Wall Separating Fluids at Different Temperatures

1980 ◽  
Vol 102 (4) ◽  
pp. 630-635 ◽  
Author(s):  
R. Anderson ◽  
A. Bejan

This paper describes an analytical study of laminar natural convection on both sides of a vertical conducting wall of finite height separating two semi-infinite fluid reservoirs of different temperatures. The countercurrent boundary layer flow formed on the two sides is illustrated via representative streamlines, temperature and heat flux distributions. The net heat transfer between reservoirs is reported for the general case in which the wall thermal resistance is not negligible relative to the overall reservoir-to-reservoir thermal resistance.

Author(s):  
Wenjiang Wu ◽  
Chan Y. Ching

The effect of a partition on the laminar natural convection flow in an air-filled square cavity driven by a temperature difference across the vertical walls was investigated experimentally. Two partitions with non-dimensional heights of 0.0625 and 0.125 was attached either to the upper half of the heated vertical wall or the top wall at different locations. The experiments were performed for a global Grashof number of approximately 1.24×108 and non-dimensional top wall temperatures of approximately 0.48 to 2.28. At the higher top wall temperatures, a secondary flow circulation region formed between the partition attached to the top wall and the heated vertical wall of the cavity. This secondary flow circulation region was sensitive to the location and height of the partition, in addition to the top wall temperature of the cavity. The secondary flow circulation region moved the location where the upward boundary layer flow along the heated vertical wall turned over to be further away from the top wall, than in the cavity without the partition. A thermal boundary layer was observed to move along the rear surface of the partition attached to the top wall. In the region close to the top wall, the partitions caused the non-dimensional temperature outside of the boundary layer and the local Nusselt number along the heated vertical wall to be different from that in the cavity without the partition. There were no significant effects of the partition on the flow and heat transfer characteristics in the lower half of the cavity.


Author(s):  
Milorad B. Dzodzo

Laminar natural convection in cubic and rhomb–shaped enclosures (rhomb angles 59°, 44° and 28.2°) with two opposite vertical walls kept at different temperatures was investigated experimentally and numerically. The enclosures were filled with glycerol and the Rayleigh (Ra) and Prandtl (Pr) numbers ranged from 2,000<Ra<369,000 and 2,680<Pr<7,000. The visualization of the velocity and temperature fields was obtained by using Plexiglass and liquid crystal particles as tracers. The finite volume method based on the finite difference approach was applied for numerical analysis. The velocity and temperature fields and average Nusselt numbers were found as a function of the Reyleigh and Prandtl numbers. Comparison of the average Nusselt numbers for cubic and rhomb-shaped enclosures indicates decrease of heat transfer for the cases when the lower and upper vertical walls of the rhomb-shaped enclosures are at lower and higher temperatures, respectively. This is due to the tendency of fluid stratification in the lower and upper corners.


1970 ◽  
Vol 92 (1) ◽  
pp. 159-167 ◽  
Author(s):  
M. E. Newell ◽  
F. W. Schmidt

Two-dimensional laminar natural convection in air contained in a long horizontal rectangular enclosure with isothermal walls at different temperatures has been investigated using numerical techniques. The time-dependent governing differential equations were solved using a method based on that of Crank and Nicholson. Steady-state solutions were obtained for height to width ratios of 1, 2.5, 10, and 20, and for values of the Grashof number, GrL′, covering the range 4 × 103 to 1.4 × 105. The bounds on the Grashof number for H/L = 20 is 8 × 103 ≤ GrL′ ≤ 4 × 104. The results were correlated with a three-dimensional power law which, yielded H/L=1Nu¯L′=0.0547(GrL′)0.3972.5≤H/L≤20Nu¯L′=0.155(GrL′)0.315(H/L)−0.265 The results compare favorably with available experimental results.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Mehran Ahmadi ◽  
Golnoosh Mostafavi ◽  
Majid Bahrami

Steady-state external natural convection heat transfer from interrupted rectangular vertical walls is investigated. A systematic numerical, experimental, and analytical study is conducted on the effect of adding interruptions to a vertical plate. Comsol multiphysics is used to develop a two-dimensional numerical model for investigation of fin interruption effects on natural convection. A custom-designed testbed is built and six interrupted wall samples are machined from aluminum. An effective length is introduced for calculating the natural convection heat transfer from interrupted vertical walls. Performing an asymptotic analysis and using a blending technique, a new compact relationship is proposed for the Nusselt number. Our results show that adding interruptions to a vertical wall can enhance heat transfer rate up to 16% and reduce the weight of the fins, which in turn, lead to lower manufacturing and material costs.


2003 ◽  
Vol 125 (4) ◽  
pp. 624-634 ◽  
Author(s):  
Xundan Shi ◽  
J. M. Khodadadi

A finite-volume-based computational study of steady laminar natural convection (using Boussinesq approximation) within a differentially heated square cavity due to the presence of a single thin fin is presented. Attachment of highly conductive thin fins with lengths equal to 20, 35 and 50 percent of the side, positioned at 7 locations on the hot left wall were examined for Ra=104,105,106, and 107 and Pr=0.707 (total of 84 cases). Placing a fin on the hot left wall generally alters the clockwise rotating vortex that is established due to buoyancy-induced convection. Two competing mechanisms that are responsible for flow and thermal modifications are identified. One is due to the blockage effect of the fin, whereas the other is due to extra heating of the fluid that is accommodated by the fin. The degree of flow modification due to blockage is enhanced by increasing the length of the fin. Under certain conditions, smaller vortices are formed between the fin and the top insulated wall. Viewing the minimum value of the stream function field as a measure of the strength of flow modification, it is shown that for high Rayleigh numbers the flow field is enhanced regardless of the fin’s length and position. This suggests that the extra heating mechanism outweighs the blockage effect for high Rayleigh numbers. By introducing a fin, the heat transfer capacity on the anchoring wall is always degraded, however heat transfer on the cold wall without the fin can be promoted for high Rayleigh numbers and with the fins placed closer to the insulated walls. A correlation among the mean Nu, Ra, fin’s length and its position is proposed.


Author(s):  
Xizhen Ma ◽  
Wen Fu ◽  
Haijun Jia ◽  
Peiyue Li ◽  
Jun Li

The non-condensable gas is used to keep the pressure stable in the steam-gas pressurizer. The processes of heat and mass transfer during steam condensation in the presence of non-condensable gas play an important role and the thermal hydraulic characteristics in the pressurizer is particularly complicated due to the non-condensable gas. The effects of non-condensable gas on the process of heat and mass transfer during steam condensation were experimental investigated. A steam condensation experimental system under high pressure and natural convection was built and nitrogen was chosen in the experiments. The steam and nitrogen were considered in thermal equilibrium and shared the same temperature in the vessel under natural convection. In the experiments, the factors, for instance, pressure, mass fraction of nitrogen, subcooling of wall and the distribution of nitrogen in the steam, had been taken into account. The rate of heat transfer of steam condensation on the vertical wall with nitrogen was obtained and the heat transfer coefficients were also calculated. The characteristics curve of heat and mass transfer during steam condensation with non-condensable gas under high pressure were obtained and an empirical correlation was introduced to calculated to heat transfer coefficient of steam condensation with nitrogen which the calculation results showed great agreement with the experimental data.


2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


Sign in / Sign up

Export Citation Format

Share Document