Effects of Asperities in Elastohydrodynamic Lubrication

1980 ◽  
Vol 102 (3) ◽  
pp. 374-378 ◽  
Author(s):  
M. Kaneta ◽  
A. Cameron

Optical interferometry was used to study rough surfaces under lubricated point contact. Three dimensional “asperities” of chromium were sputtered onto a steel ball which was run against a smooth glass plate under both rolling and sliding. The experimental results were compared with the various published theories. The film thicknesses found in sliding are different from those observed in pure rolling, which are nearly equal to the theoretical values. Film thickness collapse occurred when the central film thickness/half asperity height ratio (λ ratio) reached a critical value.

1974 ◽  
Vol 188 (1) ◽  
pp. 221-238 ◽  
Author(s):  
D. G. Wymer ◽  
A. Cameron

In Part 1, optical interferometry is used to study an elastohydrodynamically lubricated line contact between a taper roller and a glass plate under pure rolling conditions. The results give detailed information on film profiles and show the effects of end blending, lubricant starvation, deep scratches and static oil entrapments. In Part 2, oil film thicknesses in an elastohydrodynamic line contact are measured using optical interferometry and compared with theory. Two empirical formulae are derived for film thickness in the central region and at the exit constriction. In addition to the optical measurements, electrical measurements (resistance and capacitance) are made simultaneously, enabling a direct comparison to be made.


Author(s):  
C A Holt ◽  
H P Evans ◽  
R W Snidle

The paper describes a numerical solution method for the point contact elastohydrodynamic lubrication (EHL) problem under non-Newtonian, isothermal conditions. The theoretical formulation of the non-Newtonian effect is general and may be applied to both shear thinning and limiting shear stress behaviour. The particular rheological model investigated in this work is the Eyring ‘sinh law’ relation. The numerical solution of the lubrication equations is based upon a control volume approach rather than the more usual methods that utilize a modified Reynolds equation. This new approach ensures that flow continuity is satisfied at the discretization level. Results are presented to show the effect of non-Newtonian behaviour on film thickness and pressure distribution in circular EHL contacts operating over a range of slide-roll ratios from 0 (pure rolling) to 1.5. Under conditions of pure rolling or low sliding there is found to be little effect of non-Newtonian behaviour, but at the highest degree of sliding the film thickness over the central, flattened area of the contact is reduced by up to 10 per cent at the highest rolling speed of 0.75 m/s.


2005 ◽  
Vol 127 (1) ◽  
pp. 51-60 ◽  
Author(s):  
A. Fe´lix-Quin˜onez ◽  
P. Ehret ◽  
J. L. Summers

A direct comparison between experimental and numerical results for the passage of an array of 3D flat-top, square shaped surface features through an EHL point contact is presented. Results for pure rolling conditions show that the features’ deformation in the high-pressure region is governed by their ability to entrap lubricant both underneath and in the grooves during their passage through the inlet zone. Film perturbations associated with each defect occur as locally enhanced regions of lubricant and film thickness micro-constrictions. Under sliding conditions the features sustain further deformations as they traverse the high-pressure conjunction and meet the highly viscous lubricant entrapped in the grooves, which moves at a different velocity. Lubricant is also seen to accumulate just in front or behind the features depending on the slide-to-roll ratio. Overall, the results highlight the importance of understanding the effects of the defects structure and the lubricant rheology on the film thickness to unravel the effects of real roughness patterns.


Author(s):  
Yuchuan Liu ◽  
Q. Jane Wang ◽  
Scott Bair ◽  
Philippe Vergne

We present a realistic elastohydrodynamic lubrication (EHL) simulation in point contact using a Carreau-like model for the shear-thinning response and the Doolittle-Tait free-volume viscosity model for the piezoviscous response. The liquid is a high viscosity polyalphaolefin which possesses a relatively low threshold for shear-thinning. As a result, the measured EHL film thickness is about one-half of the Newtonian prediction. We derived and numerically solved the two-dimensional generalized Reynolds equation for the modified Carreau model based on Greenwood [1]. Departing from many previous solutions, the viscosity models used for the pressure and shear dependence were obtained entirely from viscometer measurements. Truly remarkable agreement is found in the comparisons of simulation and experiment for traction coefficient and for film thickness in both pure rolling and sliding cases. This agreement validates the use of a generalized Newtonian model in EHL.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Yuchuan Liu ◽  
Q. Jane Wang ◽  
Ivan Krupka ◽  
Martin Hartl ◽  
Scott Bair

Lubricant base oils are often blends of different molecular weight cuts to arrive at a specified ambient pressure viscosity and, to improve the temperature-viscosity behavior or to simply increase the viscosity, viscosity-modifying polymer additives are often added to the base oil. This paper investigates the effect of mixture rheology on elastohydrodynamic lubrication (EHL) film thickness using EHL contact measurements and a full numerical analysis for three synthetic lubricants including two single-component lubricants PAO650 and PAO100 and a mixture of these. The pressure and shear dependences of the viscosity of these lubricants were measured with high-pressure viscometers; viscosities were not adjusted to fit experiment. The point contact film thicknesses for these lubricants in pure rolling were measured using a thin-film colorimetric interferometry apparatus. Numerical simulations based on the measured rheology show very good agreement with the measurements of film thickness while the Newtonian prediction is up to twice the measurement. These results validate the use of realistic shear-thinning and pressure-viscosity models, which originate from viscosity measurements. It is conceivable that simulation may provide a means to “engineer” lubricants with the optimum balance of film thickness and friction through intelligent mixing of components.


1993 ◽  
Vol 115 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Kyung-Hoon Kim ◽  
Farshid Sadeghi

A numerical study of Newtonian thermal elastohydrodynamic lubrication (EHD) of rolling/sliding point contacts has been conducted. The two-dimensional Reynolds, elasticity and the three-dimensional energy equations were solved simultaneously to obtain the pressure, film thickness and temperature distribution within the lubricant film. The control volume approach was employed to discretize the differential equations and the multi-level multi-grid technique was used to simultaneously solve them. The discretized equations, as well as the nonorthogonal coordinate transformation used for the solution of the energy equation, are described. The pressure, film thickness and the temperature distributions, within the lubricant film at different loads, slip conditions and ellipticity parameters are presented.


Author(s):  
M Kaneta ◽  
H Nishikawa ◽  
M Naka

Using the optical interferometry technique, transient behaviour of grease films at an elastrohydrodynamic lubrication (EHL) point contact caused by a transversely oriented groove and long bump passing through the contact area is directly observed with three different types of diurea grease without additives. The effects of the thickener content on the grease film formation are also examined. It has been found that the behaviour of EHL films depends strongly on the thickener structure, and the effects of surface defects on EHL films become pronounced as the film thickness decreases. It has also been found that the thickener lumps move through the EHL conjunction while repeating attachment to the surfaces and detachment from them, and the thickener lumps deposited on the surfaces affect the film behaviour as a kind of solid bump.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuchuan Liu ◽  
Dong Zhu

Elastohydrodynamic lubrication (EHL) is a common mode of fluid-film lubrication in which many machine elements operate. Its thermal behavior is an important concern especially for components working under extreme conditions such as high speeds, heavy loads, and surfaces with significant roughness. Previous thermal EHL (TEHL) studies focused only on the cases with smooth surfaces under the full-film lubrication condition. The present study intends to develop a more realistic unified TEHL model for point contact problems that is capable of simulating the entire transition of lubrication status from the full-film and mixed lubrication all the way down to boundary lubrication with real machined roughness. The model consists of the generalized Reynolds equation, elasticity equation, film thickness equation, and those for lubricant rheology in combination with the energy equation for the lubricant film and the surface temperature equations. The solution algorithms based on the improved semi-system approach have demonstrated a good ability to achieve stable solutions with fast convergence under severe operating conditions. Lubricant film thickness variation and temperature rises in the lubricant film and on the surfaces during the entire transition have been investigated. It appears that this model can be used to predict mixed TEHL characteristics in a wide range of operating conditions with or without three-dimensional (3D) surface roughness involved. Therefore, it can be employed as a useful tool in engineering analyses.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Punit Kumar ◽  
M. M. Khonsari

An extensive set of full elastohydrodynamic lubrication point contact simulations has been used to develop correction factors to account for the effect of shear-thinning lubricant behavior on the central and minimum film thickness in circular contacts under pure rolling condition. The film thickness for a shear-thinning lubricant can be easily obtained by dividing the corresponding Newtonian film thickness by the appropriate correction factor. Comparisons of the film thickness values obtained using the correction factors have been matched with the published experimental results pertaining to shear-thinning lubricants with a variety of realistic flow and piezoviscous properties under a wide range of operating speed. The good agreement between them establishes the validity and versatility of the correction factors developed in this paper.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Sign in / Sign up

Export Citation Format

Share Document