Experimental Evaluation of a Mixed Friction Hydrostatic Mechanical Face Seal Model Considering Radial Taper, Thermal Taper, and Wear

1982 ◽  
Vol 104 (4) ◽  
pp. 439-447 ◽  
Author(s):  
L. A. Young ◽  
A. O. Lebeck

In this paper the results of experimental investigations of the effects of radial taper on mechanical face seals are presented and compared to theory. The previously published theory considers the effects of thermal taper caused by a temperature gradient in the seal rings; mixed friction in the case where load support is shared between hydrostatic support and partial contact of the seal faces; surface roughness, which affects both load sharing and leakage; and wear, which alters the radial profile. Fifteen tests were run using a 100 mm diameter carbon versus tungsten carbide seal at 1800 rpm and 3.45 MPa in water. Test duration was up to 100 hr. Varying amounts of radial taper were used. Tests were run at balance ratios of 1.00 and 0.75. Initial and final surface profiles were recorded. Seal torque, leakage, and face temperatures were recorded as functions of time. Results show that theory predicts initial torque and leakage as functions of initial taper quite well, given knowledge of seal surface characteristics. Predicted equilibrium thermal taper as a function of torque for a balance ratio of 1.0 is good. For a seal having a balance ratio of 0.75, predicted equilibrium thermal rotation shows some agreement but more experimental data are needed. The results of 1.00 balance ratio tests suggest that after a long period of operation, any initial taper will be worn away and the seal would continue to operate as a parallel face seal. Results from long-term tests indicate that the wear coefficient is not a constant. While the experimental results support the basic concepts of the model, the results show where further work must be done to better understand the role of surface roughness and wear processes in mechanical face seals.

1978 ◽  
Vol 100 (1) ◽  
pp. 81-90 ◽  
Author(s):  
A. O. Lebeck ◽  
J. L. Teale ◽  
R. E. Pierce

A model of face seal lubrication is proposed and developed. Hydrodynamic lubrication for rough surfaces, surface waviness, asperity load support, elastic deflection, and wear are considered in the model. Predictions of the ratio of hydrodynamic load support to asperity load support are made for a face seal sealing a low viscosity liquid where some contact does occur and surface roughness is important. The hydrodynamic lubrication is caused by circumferential surface waviness on the seal faces. Waviness is caused by initial out of flatness or any of the various distortions that occur on seal ring faces in operation. The equilibrium solution to the problem yields one dimensional hydrodynamic and asperity pressure distributions, mean film thickness, elastic deflection, and friction for a given load on the seal faces. The solution is found numerically. It is shown that the fraction of hydrodynamic load support depends on many parameters including the waviness amplitude, number of waves around the seal, face width, ring stiffness, and most importantly, surface roughness. For the particular seal examined the fraction of load support would be small for the amount of waviness expected in this seal. However, if the surface roughness were lower, almost complete lift-off is possible. The results of the analysis show why the initial friction and wear rates in mechanical face seals may vary widely; the fraction of hydrodynamic load support depends on the roughness and waviness which are not necessarily controlled. Finally, it is shown how such initial waviness effects disappear as the surface profile is altered by wear. This may take a long or short time, depending on the initial amount of hydrodynamic load support, but unless complete liftoff is achieved under all operating conditions, the effects of initial waviness will vanish in time for steady state conditions. Practical implications are drawn for selecting some seal parameters to enhance initial hydrodynamic load support without causing significant leakage.


2007 ◽  
Vol 129 (4) ◽  
pp. 841-850 ◽  
Author(s):  
Sébastien Thomas ◽  
Noël Brunetière ◽  
Bernard Tournerie

A numerical modeling of thermoelastohydrodynamic mechanical face seal behavior is presented. The model is an axisymmetric one and it is confined to high pressure compressible flow. It takes into account the behavior of a real gas and includes thermal and inertia effects, as well as a choked flow condition. In addition, heat transfer between the fluid film and the seal faces is computed, as are the elastic and thermal distortions of the rings. In the first part of this paper, the influence of the coning angle on mechanical face seal characteristics is studied. In the second part, the influence of the solid distortions is analyzed. It is shown that face distortions strongly modify both the gap geometry and the mechanical face seal’s performance. The mechanical distortions lead to a converging gap, while the gas expansion, by cooling the fluid, creates a diverging gap.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1285
Author(s):  
Wentao He ◽  
Shaoping Wang ◽  
Chao Zhang ◽  
Xi Wang ◽  
Di Liu

The service life of mechanical face seals is related to the lubrication and wear characteristics. The stable analytical methods are commonly used, but they cannot address effects of random vibration loading, which, according to experimental studies, are important factors for lubrication and wear of mechanical face seals used in air and space vehicles. Hence, a dynamic model for mechanical face seals is proposed, with a focus on the effects of random vibration loading. The mechanical face seal in the axial direction is described as a mass-spring-damping system. Spectrum analysis specified for random vibration is then performed numerically to obtain the response power spectral density (PSD) of the mechanical face seal and calculate the root mean square (RMS) values under random vibration conditions. A lumped parameter model is then developed to examine how dynamic parameters such as stiffness and damping affect the lubrication regimes of mechanical face seals. Based on the dynamic model and Archard wear equation, a numerical wear simulation method is proposed. The results elucidated that the increase of input acceleration PSDs, the decrease of axial damping, and the increase of axial stiffness lead to the probability of the mechanical face seal operating under full film lubrication regime increase and finally the decrease of wear. This research provides a guideline for improving the adaptability of mechanical face seals under random vibration environments.


1981 ◽  
Vol 103 (4) ◽  
pp. 587-592 ◽  
Author(s):  
I. Etsion

The dynamic response of a flexibly-mounted ring to runout of the rotating seat in mechanical face seal is analyzed assuming small perturbations. It is found that tracking ability of the stator depends only on its dynamic characteristics and operating conditions and is not affected by the amount of runout. Three different modes of dynamic response are shown and the condition for parallel tracking is presented. The present analysis is limited to flat-faced seals with no secondary seal damping. Nevertheless it provides a good insight into the dynamic behavior of noncontacting face seals.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Philip Varney ◽  
Itzhak Green

Noncontacting mechanical face seals are often described as unpredictable machine elements, gaining this moniker from numerous instances of premature and unexpected failure. Machine faults such as misalignment or imbalance exacerbate seal vibration, leading to undesirable and unforeseen contact between the seal faces. A hypothesis explaining the high probability of failure in noncontacting mechanical face seals is this undesired seal face contact. However, research supporting this hypothesis is heuristic and experiential and lacks the rigor provided by robust simulation incorporating contact into the seal dynamics. Here, recent developments in modeling rotor–stator rub using rough surface contact are employed to simulate impact phenomena in a flexibly mounted stator (FMS) mechanical face seal designed to operate in a noncontacting regime. Specifically, the elastoplastic Jackson–Green rough surface contact model is used to quantify the contact forces using real and measurable surface and material parameters. This method also ensures that the seal face clearance remains positive, thus allowing one to calculate fluid-film forces. The seal equations of motion are simulated to indicate several modes of contacting operation, where contact is identified using waveforms, frequency spectra, and contact force calculations. Interestingly, and for the first time, certain parameters generating contact are shown to induce aperiodic mechanical face seal vibration, which is a useful machine vibration monitoring symptom. Also for the first time, this work analytically shows a mechanism where severe contact precipitates seal failure, which was previously known only through intuition and/or experience. The utility of seal face contact diagnostics is discussed along with directions for future work.


1980 ◽  
Vol 102 (2) ◽  
pp. 133-138 ◽  
Author(s):  
A. O. Lebeck

A mixed friction hydrostatic mechanical face seal model is presented. Load support and friction due to mechanical contact and the effect of a phase change are considered. The results show that a phase change within the seal interface leads to a greater fraction of the load being supported by fluid film pressure than for an all liquid or all gas phase seal. As seal operating temperature approaches the boiling point of the sealed fluid, very high leakage is predicted. An explanation for puffing is offered. The effect of various design parameters on two phase seal operation is examined. On a theoretical basis, operation at a higher temperature reduces seal wear rate and friction. The model can be used by seal designers to predict instability and performance for a two phase seal.


Sign in / Sign up

Export Citation Format

Share Document