Methods of Synthesis and Analysis for Hypoid Gear-Drives of “Formate” and “Helixform”—Part 2. Machine Setting Calculations for the Pinions of Formate and Helixform Gears

1981 ◽  
Vol 103 (1) ◽  
pp. 89-101 ◽  
Author(s):  
F. L. Litvin ◽  
Y. Gutman

The second article part is devoted to the calculation of machine settings for Hypoid gear-drive pinions being generated by “Formate” and “Helixform” cutting methods. The solution is based on a local synthesis method by following assumptions: (1) the member-gear surfaceΣ2 is given (the surface Σ2 becomes known after the determination of its machine settings, see article part 1): (2) the being obtained machine settings for the pinion must guarantee: (a) that the member-gear surface Σ2 will be in contact with the pinion surface Σ1 at a choosen point M, (b) that at M and in the vicinity of M prescribed conditions of meshing will be provided.

1981 ◽  
Vol 103 (1) ◽  
pp. 83-88 ◽  
Author(s):  
F. L. Litvin ◽  
Y. Gutman

Methods for synthesis and analysis Hypoid gears generated by Helixform and Formabe methods are suggested. The article is a three-part one divided according to the considered stages of synthesis and analysis: (a) the determination of machine settings for the member-gear manufacture (after that tooth surface of the member-gear can be obtained); (b) machine setting calculations for the pinion on the base of the local synthesis for gears with approximate meshing; (c) methods for analysis (in the whole area of meshing) and optional synthesis for the mismatch gearing and its application for Hypoid gears.


1981 ◽  
Vol 103 (1) ◽  
pp. 102-110 ◽  
Author(s):  
F. L. Litvin ◽  
Y. Gutman

In this third and final part are proposed: (a) methods for analysis and optimal synthesis of mismatch gearing, (b) application of those methods for the analysis and synthesis of hypoid gear-drives generated by “Formate” and “Helixform” methods. In the previous parts, machine settings for the member-gear and the pinion of the Hypoid gear-drive were obtained. Use of these settings guarantee: (a) that the gear surfaces will be in tangency at a previously chosen point M, (b) that the conditions of meshing will be favorable at the point M and in its vicinity. But it is necessary to provide favorable conditions of meshing in the whole area of meshing. Methods proposed in this part permits achievement of those mentioned aims: (a) the analysis of gearing permits collection of the necessary information of meshing conditions in the whole area of meshing, (b) the optimal synthesis permits improvment of the conditions of meshing by variation of some parameters of pinion machine settings.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes ◽  
Ramon Ruiz-Orzaez

The conditions of meshing and contact in hypoid gear drives depend substantially on the machine-tool settings to be applied. Determination of gear geometry is the first step in the design process of a hypoid gear drive. An approach for determination of basic machine-tool settings for face-hobbed and face-milled hypoid gears is proposed, covering the cases when the gear is generated and nongenerated. Gear basic machine-tool settings are determined from the blank data that can be obtained from application of Standard ANSI/AGMA 2005-C96. Some machine-tool settings are determined analytically considering the imaginary generation of the gear by a crown gear. Some other machine-tool settings are obtained numerically in order to provide some given blank data as the normal chordal tooth thickness and the normal pressure angles of the gear teeth. The developed theory is illustrated with numerical examples.


2010 ◽  
Vol 20-23 ◽  
pp. 1385-1390
Author(s):  
Hong Bin Yang ◽  
Xiao Hong Wang ◽  
Zong De Fang

To develop a good quality of hypoid gear drive, the authors test the vibration and noise of two kinds of hypoid gear drives under different working conditions. The test object is a pair of hypoid gear drive used in the back axle of one minivan and a designed hypoid gear drive with high teeth based on the former. The results indicate that the hypoid gear drive with high teeth has lower vibration and noise.


2000 ◽  
Vol 122 (2) ◽  
pp. 201-206 ◽  
Author(s):  
I. H. Seol

The design and simulation of meshing of a single enveloping worm-gear drive with a localized bearing contact is considered. The bearing contact has a longitudinal direction and two branches of contact path. The purpose of localization is to reduce the sensitivity of the worm-gear drive to misalignment. The author’s approach for localization of bearing contact is based on the proper mismatch of the surfaces of the hob and drive worm. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and the determination of the transmission errors and the contact ratio. The developed approach has been applied for K type of single-enveloping worm-gear drives and the developed theory is illustrated with a numerical example. [S1050-0472(00)00502-X]


2020 ◽  
Vol 21 (4) ◽  
pp. 405
Author(s):  
Sándor Bodzás

The cylindrical worm gear drives are widely used in different mechanical construction such as in the vehicle industry, the robotics, the medical appliances etc. The main property of them is the perpendicular and space bypass axes arrangement. Quite high transmission ratio could be achieved because of the high number of teeth of the worm-wheel and a little number of threads of the worm. More teeth are connected on the worm-wheel at the same time that is why higher loads and power could be transferred. In this research an Archimedean type cylindrical worm gear drive was designed. After the determination of the geometric parameters the computer-aided models were created for the LTCA analysis. Knowing of the kinematic motions of the elements the contact points of the wrapping surfaces could be determined by mathematical way. The necessary coordinate system's arrangements and matrixes were also determined. Different torques were applied during the LTCA. The changing of the distribution of the normal stress and normal deformation into different directions was followed on each connecting tooth of the worm-wheel by the torques. Based on the results consequences were determined by the created diagrams which contain the torques and the analysed mechanical parameter for each tooth.


2006 ◽  
Vol 129 (12) ◽  
pp. 1294-1302 ◽  
Author(s):  
Yi-Pei Shih ◽  
Zhang-Hua Fong

The fundamental design of spiral bevel and hypoid gears is usually based on a local synthesis and a tooth contact analysis of the gear drive. Recently, however, several flank modification methodologies have been developed to reduce running noise and avoid edge contact in gear making, including modulation of tooth surfaces under predesigned transmission errors. This paper proposes such a flank modification methodology for face-hobbing spiral bevel and hypoid gears based on the ease-off topography of the gear drive. First, the established mathematical model of a universal face-hobbing hypoid gear generator is applied to investigate the ease-off deviations of the design parameters—including cutter parameters, machine settings, and the polynomial coefficients of the auxiliary flank modification motion. Subsequently, linear regression is used to modify the tooth flanks of a gear pair to approximate the optimum ease-off topography suggested by experience. The proposed method is then illustrated using a numerical example of a face-hobbing hypoid gear pair from Oerlikon’s Spiroflex cutting system. This proposed flank modification methodology can be used as a basis for developing a general technique of flank modification for similar types of gears.


2006 ◽  
Vol 129 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Faydor L. Litvin ◽  
Kenji Yukishima ◽  
Kenichi Hayasaka ◽  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes

The computerized design, generation, and tooth contact analysis of a Klingelnberg-type cylindrical worm gear drive is considered wherein localization of contact is obtained by application of an oversized hob and mismatch geometries of hob and worm of the drive. A computerized approach for the determination of contacting surfaces and the investigation of their meshing and contact by tooth contact analysis is presented. The developed theory results in an improvement of bearing contact and reduction of sensitivity to misalignment. The theory is illustrated with numerical examples and may be applied for other types of cylindrical worm gear drives.


Sign in / Sign up

Export Citation Format

Share Document