A Variational-Vector Calculus Approach to Machine Dynamics

1986 ◽  
Vol 108 (1) ◽  
pp. 25-30 ◽  
Author(s):  
E. J. Haug ◽  
M. K. McCullough

A variational-vector calculus approach is presented to define virtual displacements and rotations and position, velocity, and acceleration of individual components of a multibody mechanical system. A two-body subsystem with both Cartesian and relative coordinates is used to illustrate a systematic method of exploiting the linear structure of both vector and differential calculus, in conjunction with a variational formulation of the equations of motion of rigid bodies, to derive the matrix structure of governing multibody system equations of motion. A pattern for construction of the system mass matrix and generalized force terms is developed and applied to derivation of the equations of motion of a vehicle system. The development demonstrates an approach to multibody machine dynamics that closely parallels methods used in finite-element structural analysis.

Author(s):  
W. J. Chen

Abstract Concise equations for rotor dynamics analysis are presented. Two coordinate ordering methods are introduced in the element equations of motion. One is in the real domain and the other is in the complex domain. The two proposed ordering algorithms lead to more compact element matrices. A station numbering technique is also proposed for the system equations during the assembly process. This numbering technique can minimize the matrix bandwidth, the memory storage and can increase the computational efficiency.


Author(s):  
Martin M. Tong

Numerical solution of the dynamics equations of a flexible multibody system as represented by Hamilton’s canonical equations requires that its generalized velocities q˙ be solved from the generalized momenta p. The relation between them is p = J(q)q˙, where J is the system mass matrix and q is the generalized coordinates. This paper presents the dynamics equations for a generic flexible multibody system as represented by p˙ and gives emphasis to a systematic way of constructing the matrix J for solving q˙. The mass matrix is shown to be separable into four submatrices Jrr, Jrf, Jfr and Jff relating the joint momenta and flexible body mementa to the joint coordinate rates and the flexible body deformation coordinate rates. Explicit formulas are given for these submatrices. The equations of motion presented here lend insight to the structure of the flexible multibody dynamics equations. They are also a versatile alternative to the acceleration-based dynamics equations for modeling mechanical systems.


1998 ◽  
Vol 120 (1) ◽  
pp. 228-233 ◽  
Author(s):  
W. J. Chen

Concise equations for improvements in computational efficiency on dynamics of rotor systems are presented. Two coordinate ordering methods are introduced in the element equations of motion. One is in the real domain and the other is in the complex domain. The two coordinate ordering algorithms lead to compact element matrices. A station numbering technique is also proposed for the system equations during the assembly process. The proposed numbering technique can minimize the matrix bandwidth, the memory storage and can increase the computational efficiency. Numerical examples are presented to demonstrate the benefit of the proposed algorithms.


Author(s):  
Andrew J. Sinclair ◽  
John E. Hurtado

The Cayley transform and the Cayley–transform kinematic relationships are an important and fascinating set of results that have relevance in N –dimensional orientations and rotations. In this paper these results are used in two significant ways. First, they are used in a new derivation of the matrix form of the generalized Euler equations of motion for N –dimensional rigid bodies. Second, they are used to intimately relate the motion of general mechanical systems to the motion of higher–dimensional rigid bodies. This approach can be used to describe an enormous variety of systems, one example being the representation of general motion of an N –dimensional body as pure rotations of an ( N + 1)–dimensional body.


Author(s):  
Jiechi Xu ◽  
Joseph R. Baumgarten

Abstract In the present paper a general systematic modeling procedure has been conducted in deriving dynamic equations of motion using Lagrange’s approach for a spatial multibody structural system involving rigid bodies and elastic members. Both the rigid body degrees of freedom and the elastic degrees of freedom are considered as unknown generalized coordinates of the entire system in order to reflect the nature of mutually coupled rigid body and elastic motions. The assumption of specified rigid body gross motion is no longer necessary in the equation derivation and the resulting differential equations are highly nonlinear. Finite element analysis (FEA) with direct stiffness method has been employed to model the flexible substructures. Nonlinear coupling terms between the rigid body and elastic motions are fully derived and are explicitly expressed in matrix form. The equations of motion of each individual subsystem are formulated based on a moving frame instead of a traditional inertial frame. These local level equations of motion are assembled to obtain the system equations with the implementation of geometric boundary conditions by means of a compatibility matrix.


2006 ◽  
Vol 129 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Philip D. Cha ◽  
Nathanael C. Yoder

A simple approach is proposed that can be used to analyze the free and forced responses of a combined system, consisting of an arbitrarily supported continuous structure carrying any number of lumped attachments. The assumed modes method is utilized to formulate the equations of motion, which conveniently leads to a form that allows one to exploit the Sherman-Morrison or the Sherman-Morrison-Woodbury formulas to compute the natural frequencies and frequency response of the combined system. Rather than solving a generalized eigenvalue problem to obtain the natural frequencies of the system, a frequency equation is formulated whose solution can be easily solved either numerically or graphically. In order to determine the response of the structure to a harmonic input, a method is formulated that leads to a reduced matrix whose inverse yields the same result as the traditional method, which requires the inversion of a larger matrix. The proposed scheme is easy to code, computationally efficient, and can be easily modified to accommodate arbitrarily supported continuous linear structures that carry any number of miscellaneous lumped attachments.


2018 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Shay Hershkovitz

Marxist criticism is most discernible; despite the oft-repeated claim that it is now irrelevant, belonging to an age now past. This essay assumes that criticism originating in the Marxist school of thought continue to be relevant also in this present time; though it may need to be further developed and improved by integrating newer critical approaches into the classic Marxist discourse. This essay therefore integrates basic Marxist ideas with key concepts from ‘social systems theory’; especially the theory of the German sociologist Niklas Luhmann's. In this light, capitalism is conceptualized here as a ‘super (social) system’: a meaning-creating social entity, in which social actors, behaviors and structures are realized. This theoretical concept and terminology emphasizes the social construction of control and stability, when discussing the operational logic of capitalism.


Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi

The topology optimization method is extended for the optimization of geometrically nonlinear, time-dependent multibody dynamics systems undergoing nonlinear responses. In particular, this paper focuses on sensitivity analysis methods for topology optimization of general multibody dynamics systems, which include large displacements and rotations and dynamic loading. The generalized-α method is employed to solve the multibody dynamics system equations of motion. The developed time integration incorporated sensitivity analysis method is based on a linear approximation of two consecutive time steps, such that the generalized-α method is only applied once in the time integration of the equations of motion. This approach significantly reduces the computational costs associated with sensitivity analysis. To show the effectiveness of the developed procedures, topology optimization of a ground structure embedded in a planar multibody dynamics system under dynamic loading is presented.


Author(s):  
M. A. Nahon ◽  
J. Angeles

Abstract Mechanical hands have become of greater interest in robotics due to the advantages they offer over conventional grippers in tasks requiring dextrous manipulation. However, mechanical hands also tend to be more complex in construction and require more sophisticated design analysis to determine the forces in the system. A mechanical hand can be described as a kinematic chain with time-varying topology which becomes redundantly actuated when an object is grasped. When this occurs, care must be exercised to avoid crushing the object or generating excessive forces within the mechanism. In the present work, this problem is formulated as a constrained quadratic optimization problem. The forces to be minimized form the objective, the dynamic equations of motion form the equality constraints and the finger-object contacts yield the inequality constraints. The quadratic-programming approach is shown to be advantageous due to its ability to minimize ‘internal forces’ A technique is proposed for smoothing the discontinuities in the force solution which occur when the toplogy changes.


Author(s):  
Hashem Ashrafiuon

Abstract This paper presents the effect of foundation flexibility on the optimum design of vibration absorbers. Flexibility of the base is incorporated into the absorber system equations of motion through an equivalent damping ratio and stiffness value in the direction of motion at the connection point. The optimum values of the uncoupled natural frequency and damping ratio of the absorber are determined over a range of excitation frequencies and the primary system damping ratio. The design parameters are computed and compared for the rigid, static, and dynamic models of the base as well as different levels of base flexibility.


Sign in / Sign up

Export Citation Format

Share Document