Verification of an Elastic Procedure to Estimate Elastic Follow-Up

1986 ◽  
Vol 108 (4) ◽  
pp. 461-469 ◽  
Author(s):  
A. K. Dhalla

This paper presents a simplified elastic procedure to estimate the amount of elastic follow-up due to thermal expansion stress experienced by a large diameter (greater than 200 mm) thin-walled (d/t greater than 30) piping system. The simplified method utilizes the concept of reduced elastic modulus which was successfully applied to classify clamp-induced pipe stresses into primary and secondary categories. The conservatism of the simplified method in quantifying elastic follow-up is illustrated in this paper by comparing the numerical estimate of elastic follow-up with that obtained from a detailed creep analysis of a Liquid Metal Fast Breeder Reactor piping system.

1986 ◽  
Vol 108 (4) ◽  
pp. 453-460 ◽  
Author(s):  
A. K. Dhalla

Large-diameter thin-walled piping such as that used in the Liquid Metal Fast Breeder Reactor (LMFBR) plant is characterized by relatively stiff straight pipes welded to flexible elbows. According to Robinson [1], such a piping system configuration may experience elastic follow-up during elevated temperature operation. Therefore, ASME Code Case N-47 requires that the secondary thermal expansion stress “. . . with large amounts of elastic follow-up . . .” be considered a load-controlled primary stress. A procedure to calculate the extent of potential elastic follow-up and thereby classify the thermal expansion stress as either primary or secondary is presented here. The elastic follow-up effect is investigated in detail by evaluating spatial and temporal redistribution of loads and inelastic strains computed for a typical LMFBR piping system.


1986 ◽  
Vol 108 (3) ◽  
pp. 330-333
Author(s):  
G. A. Schott ◽  
G. M. Hulbert ◽  
C. F. Heberling

This paper presents results and observations from dynamic tests and analyses performed on an 8-in. (0.20-m) diameter, thin-walled piping system. The piping system is a scaled representation of a Liquid Metal Fast Breeder Reactor (LMFBR) large diameter piping loop. Prototypic piping restraints were employed, including mechanical snubbers, rigid struts, pipe hangers and nonintegral pipe clamps. Snap-back, sine-sweep and seismic tests were performed for various restraint configurations and piping conditions. The test results are compared to analytical predictions for verification of the methods and models used in the seismic design of LMFBR piping systems. Test program conclusions and general recommendations for piping seismic analyses are presented along with a discussion of test and analysis results.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1015
Author(s):  
Antonio Bulum ◽  
Gordana Ivanac ◽  
Eugen Divjak ◽  
Iva Biondić Špoljar ◽  
Martina Džoić Dominković ◽  
...  

Shear wave elastography (SWE) is a type of ultrasound elastography with which the elastic properties of breast tissues can be quantitatively assessed. The purpose of this study was to determine the impact of different regions of interest (ROI) and lesion size on the performance of SWE in differentiating malignant breast lesions. The study included 150 female patients with histopathologically confirmed malignant breast lesions. Minimal (Emin), mean (Emean), maximal (Emax) elastic modulus and elasticity ratio (e-ratio) values were measured using a circular ROI size of 2, 4 and 6 mm diameters and the lesions were divided into large (diameter ≥ 15 mm) and small (diameter < 15 mm). Highest Emin, Emean and e-ratio values and lowest variability were observed when using the 2 mm ROI. Emax values did not differ between different ROI sizes. Larger lesions had significantly higher Emean and Emax values, but there was no difference in e-ratio values between lesions of different sizes. In conclusion, when measuring the Emin, Emean and e-ratio of malignant breast lesions using SWE the smallest possible ROI size should be used regardless of lesion size. ROI size has no impact on Emax values while lesion size has no impact on e-ratio values.


2013 ◽  
Vol 794 ◽  
pp. 507-513
Author(s):  
R.G. Rangasamy ◽  
Prabhat Kumar

Austenitic stainless steels are the major material of construction for the fast breeder reactors in view of their adequate high temperature mechanical properties, compatibility with liquid sodium coolant, good weldability, availability of design data and above all the fairly vast and satisfactory experience in the use of these steels for high temperature service. All the Nuclear Steam Supply System (NSSS) components of FBR are thin walled structure and require manufacture to very close tolerances under nuclear clean conditions. As a result of high temperature operation and thin wall construction, the acceptance criteria are stringent as compared to ASME Section III. The material of construction is Austenitic stainless steel 316 LN and 304 LN with controlled Chemistry and calls for additional tests and requirements as compared to ASTM standards. Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type, 500 MWe reactor which is at advanced stage of construction at Kalpakkam, Tamilnadu, India. In PFBR, the normal heat transport is mainly through two secondary loops and in their absence; the decay heat removal is through four passive and independent safety grade decay heat removal loops (SGDHR). The secondary sodium circuit and the SGHDR circuit consist of sodium tanks for various applications such as storage, transfer, pressure mitigation and to take care of volumetric expansion. The sodium tanks are thin walled cylindrical vertical vessels with predominantly torispherical dished heads at the top and bottom. These tanks are provided with pull-out nozzles which were successfully made by cold forming. Surface thermocouples and heaters, wire type leak detectors are provided on these tanks. These tanks are insulated with bonded mineral wool and with aluminum cladding. All the butt welds in pressure parts were subjected to 100% Radiographic examination. These tanks were subjected to hydrotest, pneumatic test and helium leak test under vacuum. The principal material of construction being stainless steel for the sodium tanks shall be handled with care following best engineering practices coupled with stringent QA requirements to avoid stress corrosion cracking in the highly brackish environment. Intergranular stress corrosion cracking and hot cracking are additional factors to be addressed for the welding of stainless steel components. Pickling and passivation, Testing with chemistry controlled demineralised water are salient steps in manufacturing. Corrosion protection and preservation during fabrication, erection and post erection is a mandatory stipulation in the QA programme. Enhanced reliability of welded components can be achieved mainly through quality control and quality assurance procedures in addition to design and metallurgy. The diverse and redundant inspections in terms of both operator and technique are required for components where zero failure is desired & claimed. This paper highlights the step by step quality management methodologies adopted during the manufacturing of high temperature thin walled austenitic stainless steel sodium tanks of PFBR.


Author(s):  
Takashi Wakai ◽  
Hideo Machida ◽  
Shinji Yoshida

This paper describes the efficiency of the deployment of rotational stiffness evolution model in the critical crack size evaluation for Leak Before Break (LBB) assessment of Sodium cooled Fast Reactor (SFR) pipes. The authors have developed a critical crack size evaluation method for the thin-walled large diameter pipe made of modified 9Cr-1Mo steel. In this method, since the SFR pipe is mainly subjected to displacement controlled load caused by thermal expansion, the stress at the crack part is estimated taking stiffness evolution due to crack into account. The stiffness evolution is evaluated by using the rotational spring model. In this study, critical crack sizes for several pipes having some elbows were evaluated and discuss about the effect of the deployment of the stiffness evolution model at the crack part on critical crack size. If there were few elbows in pipe, thermal stress at the crack part was remarkably reduced by considering the stiffness evolution. In contrast, in the case where the compliance of the piping system was small, the critical crack size could be estimated under displacement controlled condition. As a result, the critical crack size increases by employing the model and LBB range may be expected to be enlarged.


1991 ◽  
Vol 6 (7) ◽  
pp. 1498-1501 ◽  
Author(s):  
Paul A. Flinn

Since copper has some advantages relative to aluminum as an interconnection material, it is appropriate to investigate its mechanical properties in order to be prepared in advance for possible problems, such as the cracks and voids that have plagued aluminum interconnect systems. A model previously used to interpret the behavior of aluminum films proves to be, with minor modification, also applicable to copper. Although the thermal expansion of copper is closer to that of silicon and, consequently, the thermally induced strains are smaller, the much larger elastic modulus of copper results in substantially higher stresses. This has implications for the interaction of copper lines with dielectrics.


2002 ◽  
Vol 12 (9) ◽  
pp. 287-287
Author(s):  
V. Ya. Pokrovskii ◽  
A. V. Golovnya ◽  
P. M. Shadrin

An interferometer-based setup for measurements of length of needle-like samples is developed, and thermal expansion of o-TaS3 crystals is studied. Below the Peierls transition the temperature hysteresis of length L is observed, the width of the hysteresis loop $\delta L/L$ being up to $5\times 10^{-5}$. Curiously, $L(T)$ changes so that it is in front of its equilibrium value. The hysteresis loop couples with that of conductivity. With lowering T the charge-density waves' (CDW) elastic modulus grows and at 100 K becomes comparable with that of the lattice Yl. The results justify the assumption about the strain dependence of the CDW wave vector and clarify the nature of the anomalies of Yl which occur on the CDW depinning. In particular, Yl, is expected to show a strong drop in the static regime, if measured at sufficiently small sample elongation $(\delta L/L < 10^{ -5}) $.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Nicola Piolanti ◽  
Lorenzo Andreani ◽  
Paolo Domenico Parchi ◽  
Enrico Bonicoli ◽  
Francesco Niccolai ◽  
...  

Acetabular cup loosening is associated with pain, reduced function, and instability of the implant. If such event happens while the femoral implant is in a satisfactory position and is well fixed to the bone, isolated acetabular revision surgery is indicated. The aim of this single-center retrospective study was to evaluate the clinical and radiological results over the medium term (12-month follow-up mean 36, max 60) of isolated acetabular revisions surgery using a porous hemispheric revision shell matched with a cemented all-poly cup and large diameter femoral head (>32). 33 patients were enrolled. We collect any relevant data from the clinical board. Routine clinical and radiographic examinations were performed preoperatively; the postoperative follow-up was made at 1, 3, and 6 months and yearly thereafter. At the last available follow-up, we report satisfactory improvement of functional scores in all the patients; 2 patients (6.1%) showed thigh pain and only 4 hips (12.11%) presented mild groin pain; all the femoral components are well fixed and there were no potential or pending rerevisions. With bias due to the follow-up and to the retrospective design of the study, we report clinical, functional, and radiological satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document