An Extrapolation Procedure of Creep Data for St Determination: With Special Reference to Cr-Mo-V Steel

1987 ◽  
Vol 109 (1) ◽  
pp. 142-146 ◽  
Author(s):  
K. Maruyama ◽  
H. Oikawa

A predictive rule for long-term creep data, necessary to determine St of the ASME Code, was proposed with special reference to a Cr-Mo-V steel. This rule can predict long-term creep curves as well as rupture lives. A creep curve three hundred times longer than the longest test was estimated without unreasonable extrapolation.

Author(s):  
Hideo Hiraguchi

Abstract Recently the Discrete Cosine Transform[1], [2], [3] which is a modified Fourier Transform has begun to be used to express coefficients of creep equations using the power law or the exponential law such as Bailey-Norton law[4], [5] and θ Projection[6], [7], [8], [9], [10]. In addition, the Discrete Cosine Transform has begun to be used to express a creep equation itself. We have already found that the Discrete Cosine Transform can express the temperature and stress dependence property of the coefficients of the creep equations at the same time by the two-dimensional Discrete Cosine Transform using 8 × 8 discrete signals[11]. Furthermore, we have already found that the Discrete Cosine Transform can fit measured creep strain values very well from the primary creep region to the tertiary creep region using 8 discrete signals and it can estimate creep strain values between the measured points by interpolation very well[12]. However it has not been known if the Discrete Cosine Transform can predict the long term creep curve by using the short term creep data yet. Therefore, as a next stage, we tried to estimate the long term creep curve from the short term creep data of gas turbine materials by extrapolation using the Discrete Cosine Transform. As a result, we were able to obtain a useful numerical analysis method by utilizing the Discrete Cosine Transform Coefficients and others as a new extrapolation method. It is found that this new numerical method would be able to predict the configuration of 150,000-hour creep curve by using 500-hour to 13,000-hour short term creep data.


1990 ◽  
Vol 112 (1) ◽  
pp. 92-97 ◽  
Author(s):  
K. Maruyama ◽  
C. Tanaka ◽  
H. Oikawa

A modified θ projection concept was applied to CrMoV ferritic steels to predict long-term creep curves. The concept was successful in predicting long-term curves up to rupture. Physical basis of a constitutive equation for the concept was examined in terms of temperature dependence of its rate constant.


Author(s):  
Woo-Gon Kim ◽  
Jae-Young Park ◽  
Sung-Ho Kim ◽  
Chan-Bock Lee

This paper focused on long-term creep modeling for describing total creep curves of up to rupture for modified 9Cr-1Mo steel (G91). Creep data was obtained by a series of constant-load creep tests at 600°C. Three modified constitutive equations of modified power-law method (MPM), modified theta method (MTM) and modified omega method (MOM), described as a sum of a decaying primary creep and an accelerating tertiary creep, were proposed. A nonlinear least square fitting (NLSF) analysis was carried out on the basis of the creep data so that they provide the best fit to experimental data in optimizing parameter constants of the individual equation. Results of the NLSF analysis showed that in the lower stress regions of 160MPa (σ/σys<0.65), the MTM matched well with the experimental creep data compared with the MPM and MOM, but that in the higher stress regions of 160MPa (σ/σy > 0.65), the MPM revealed better agreement than the MTM and MOM. It was found that the MTM was superior in the modeling of long-term creep curves to the MPM and MOM. Long-term creep curves for the G91 steel were numerically modeled and its creep life was predicted by the MTM.


2006 ◽  
Vol 519-521 ◽  
pp. 1041-1046 ◽  
Author(s):  
Brian Wilshire ◽  
H. Burt ◽  
N.P. Lavery

The standard power law approaches widely used to describe creep and creep fracture behavior have not led to theories capable of predicting long-term data. Similarly, traditional parametric methods for property rationalization also have limited predictive capabilities. In contrast, quantifying the shapes of short-term creep curves using the q methodology introduces several physically-meaningful procedures for creep data rationalization and prediction, which allow straightforward estimation of the 100,000 hour stress rupture values for the aluminum alloy, 2124.


Author(s):  
Kenji Kako ◽  
Susumu Yamada ◽  
Masatsugu Yaguchi ◽  
Yusuke Minami

Type IV damage has been found at several ultra-supercritical (USC) plants that used high-chromium martensitic steels in Japan, and the assessment of the remaining life of the steels is important for electric power companies. The assessment of the remaining life needs long-term creep data for over 10 years, but such data are limited. We have attempted to assess the remaining life by creep tests and by microstructural observation of Grade 91 steels welded pipes which were used in USC plants for over 10 years. Following the results of microstructural observation of USC plant pipes, we find that microstructures, especially distribution of MX precipitates, have large effect on the creep life of Grade 91 steels.


2018 ◽  
Vol 25 (3) ◽  
pp. 713-722 ◽  
Author(s):  
Seen Chan Kim ◽  
Jae-Hyeok Shim ◽  
Woo-Sang Jung ◽  
Yoon Suk Choi

Author(s):  
Muneeb Ejaz ◽  
Norhaida Ab Razak ◽  
Andrew Morris ◽  
Scott Lockyer ◽  
Catrin M. Davies

P91 steels are widely used in high temperature components for power generation. Creep data is often generated through accelerated short term creep tests, for practical reasons, via increasing stress or temperature though this may alter the creep behaviour. Through normalising the creep test stress by tensile strength the Wilshire models reduce the batch to batch scatter in the creep data and enable the prediction of long term creep data from relatively short term test results. In this work it is shown that the Wilshire models fitted to uniaxial creep rupture data can be used to predict failure in both as cast and service exposed multiaxial tests. This is provided that the equivalent stress is the rupture controlling stress, as is the case for the P91 tests examined, and the tensile strength is measured as part of the test programme.


Author(s):  
Kouichi Maruyama ◽  
Kyosuke Yoshimi

Long term creep rupture life is usually evaluated from short term data by a time-temperature parameter (TTP) method. The apparent activation energy Q for rupture life of steels sometimes changes from a high value of short term creep to a low value of long term creep. However, the conventional TTP analyses ignore the decrease in Q, resulting in the overestimation of rupture life recognized recently in advanced high Cr ferritic steels. A multi region analysis of creep rupture data is applied to a creep data set of Gr.122 steel; in the analysis a creep rupture data is divided into several data sets so that Q value is unique in each divided data set. The multi region analysis provides the best fit to the data and the lowest value of 105 h creep rupture strength among the three ways of data analysis examined. The conventional single region analysis cannot correctly represent the data points and predicts the highest strength. A half of 0.2% proof stress could not be an appropriate boundary for dividing data to be used in the multi region analysis. In the 2001 Edition of ASME Code an F average concept has been proposed as a substitution for the safety factor of 2/3 for average rupture stress. The allowable stress of Gr.122 steel may decrease significantly when the F average concept and the multi region analysis are adopted.


Sign in / Sign up

Export Citation Format

Share Document