Solar-Powered/Fuel-Assisted Rankine-Cycle Power and Cooling-System: Simulation Method and Seasonal Performance

1984 ◽  
Vol 106 (2) ◽  
pp. 142-152 ◽  
Author(s):  
N. Lior ◽  
K. Koai

The subject of this analysis is a solar cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100° C, and it is then superheated to about 600° C in a fossil-fuel-fired superheater. The addition of about 20–26 percent of fuel doubles the power cycle’s efficiency as compared to organic Rankine cycles operating at similar collector temperatures. A comprehensive computer program was developed to analyze the operation and performance of the entire power/cooling system. Transient simulation was performed on an hourly basis over a cooling season in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.). One of the conclusions is that the seasonal system COP is 0.82 for the design configuration and that the use of water-cooled condensers and flat-plate collectors of higher efficiency increases this value to 1.35.

1984 ◽  
Vol 106 (4) ◽  
pp. 447-456 ◽  
Author(s):  
N. Lior ◽  
K. Koai

The subject of this analysis is a solar power/cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100°C, and it is then superheated to about 600°C in a fossil-fuel-fired superheater. The addition of about 20–26 percent of energy as fuel doubles the power cycle’s efficiency as compared to organic fluid Rankine cycles operating at similar collector temperatures. A sensitivity analysis of the system’s performance to the size and type of its components was performed by a transient (hourly) computer simulation over the month of August in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.), and led to the description of a system configuration which provides optimal energy performance. The newly designed turbine’s predicted efficiency is seen to be essentially invariant with system configuration, and has a monthly average value of about 73 percent.


2020 ◽  
pp. 1-9
Author(s):  
Md. Anowar Hossain ◽  
I. M. Mahbubul ◽  
Md. Abdul Aziz ◽  
Hasan Mohammad Mostofa Afroz ◽  
Md. Rashedul Islam ◽  
...  

In hot climatic regions, some kind of cooling system is necessary to avoid warmth and humidity. Many of the available cooling systems are not economic and sustainable. In this study, sustainable and feasible space/room cooling systems have been experimentally analyzed. A solar operated cooling system with two options have been designed and their performances are compared. Phase Change Material (PCM) is proposed to store thermal energy instead of a costly battery. A 1200-watt compressor and fin-type condenser are used to construct the vapor compression system. When the incoming air is passed through the cooling coil, it gets cool. For this cooling coil, 50 feet copper tube is used. The front side copper tube diameter of the fan is 3/8 inch and the backside tube diameter is 1/2 inch. It took about 35 minutes and 5 minutes to minimize the room temperature at the desired level in the case of the stand fan and duct fan, respectively. Furthermore, the stand fan and duct fan systems reduced 3 ℃ and 6 ℃ of the outside temperature, respectively.


1983 ◽  
Vol 105 (2) ◽  
pp. 217-223
Author(s):  
M. L. Warren ◽  
M. Wahlig

Economic and thermal performance analyses of typical residential and commercial active solar cooling systems are used to determine cost goals for systems to be installed between the years 1986 and 2000. Market penetration for heating, ventilating, and air conditioning systems depends on payback period, which is related to the expected real return on investment. Postulating a market share for solar cooling systems increasing to 20 percent by the year 2000, payback and return on onvestment goals as a function of year of purchase are established. The incremental solar system cost goal must be equal to or less than the 20-year present value of future energy savings, based on thermal performance analysis, at the desired return on investment. Methods for achieving these cost goals and expected solar cooling system costs will be discussed.


2019 ◽  
Vol 11 (21) ◽  
pp. 91-101
Author(s):  
Falah A-H. Mutlak

The systems cooling hybrid solar uses solar collector to convert solar energy into the source of heat for roasting Refrigerant outside of the compressor and this process helps in the transformation of Refrigerant from the gas to a liquid state in two-thirds the top of the condenser instead of two-thirds the bottom of the condenser as in Conventional cooling systems and this in turn reduces the energy necessary to lead the process of cooling. The system cooling hybrid use with a capacity of 1 ton and Refrigerant type R22 and the value of current drawn by the system limits (3.9-4.2A), the same value of electric current calculated by the system are  Conventional  within this atmosphere of Iraq, and after taking different readings of the temperatures and pressure to several points in the system's found that the Refrigerant when it comes out of the compressor, it loses part of the temperature of the water in the solar collector through a heat exchanger while the literature published in accordance with the manufacturers that the solar collector, a kind of vacuum tubes contributes to raise the pressure and temperature of the fluid cooler to reduce the consumption of energy spent on compressor. Therefore, the system described by the current not fit for domestic use within the Iraqi environmental conditions.


1980 ◽  
Vol 102 (1) ◽  
pp. 47-54 ◽  
Author(s):  
D. K. Anand ◽  
I. N. Deif ◽  
E. O. Bazques ◽  
R. W. Allen

The use of computerized system simulations for sizing and performance predictions of various solar systems requires some form of weather input to act as a system stimulus. When actual weather data are used, simulations run on an hourly basis are expensive and require considerable data handling. For many design procedures, however, hourly information is not needed, and simpler methods are desirable. One such method employs a probabilistic approach. This method involves the use of an algorithm that generates a probabilistic matrix, and an analytical formulation which is used to generate synthetic weather data. The approach has been found to be satisfactory. This work uses the stochastic (probabilistic) method to produce representative weather for five geographic regions in the U.S. for the summer months. Parallel runs are conducted with real and stochastic weather. A comparison of the results clearly shows that the probabilistic approach can satisfactorily substitute for real weather for the purpose of system simulation, at reduced cost and data handling.


2015 ◽  
Vol 2 (1) ◽  
pp. 23-28
Author(s):  
R. Hengki Hermanto

High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a highwater vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment iscan accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulatorsand etc.Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handlingespecially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages oversolid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed towerof liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This paper is trying to study the humancomfort analysis inside the packed tower of dehumidifier systems. This human comfort analysis consist of human comfort and energythat consume by the system. The results of this paper later on can be used to determine the best performance of the systems.


Author(s):  
Guillaume Becquin ◽  
Matthew Lehar

As the demand grows for low-temperature waste heat recovery systems, organic Rankine cycles (ORCs), and other alternatives to traditional steam, Rankine cycles are becoming more common in industry. Although analytical tools exist that can predict the performance of a steam cycle in a given waste-heat application, the development of a similar tool for ORCs has been hampered by the large choice of possible working fluids. In this paper, two methods are presented with the aim of providing an estimate of the best performance possible for any ORC in a given industrial application. The first is a purely analytical approach assuming an idealized fluid, and the second compares real fluids through cycle simulations to select the most appropriate parameters for the application. The analytical approach provides a rough baseline for performance, while the simulation method refines the estimate to give predictions that are more consistent with the documented performance of ORC plants currently in operation. Together, the two approaches represent a robust means of quickly estimating the capability of an ORC plant and to allow quick comparisons with other technologies.


Sign in / Sign up

Export Citation Format

Share Document