Description and Testing of a Non-Evacuated 1.5×CPC Collector Thermal Performance Comparison With Other Collector Types

1985 ◽  
Vol 107 (4) ◽  
pp. 277-280 ◽  
Author(s):  
M. Collares-Pereira

A 1.5 × non-evacuated CPC type concentrator is described and tested. The results obtained can be summarized by F′ηo = 0.673 ± 0.001 and F′U = (2.64 ± 0.041) W/m2 ° C. The early average performance of the concentrator is calculated and compared with the performance of two other collector types at constant operating temperature: a selectively coated regular flat plate and an evacuated tube type collector. It is shown that the concentrator performs better than both the flat plate and the evacuated tube collector for constant operating temperatures for 35° C to 100° C in a climate like the one in Lisbon. The three collectors are also compared operating in two systems: (1) DHW in which they all deliver comparable yearly average amounts of energy, and (2) IPH at 95° C (process return temperature = 65° C) in which the flat plate delivers ∼30 percent less yearly energy on the average in comparison with the other two which behave very much in the same way. The 1.5 × low cost is discussed in comparison with the other two collector types, establishing the concentrator as an excellent choice for hot water heating applications.

2021 ◽  
Author(s):  
Kamyar Tanha

This thesis is focused on the performance of the two SDHW systems of the sustainable Archetype houses in Vaughan, Ontario with daily hot water consumption of 225 litres. The first system consists of a flat plate solar thermal collector in conjunction with a gas boiler and a DWHR. The second SDHW system consists of an evacuated tube collector, an electric tank and a DWHR. The experimental results showed that the DWHRs were capable of an annual heat recovery of 789 kWh. The flat plate and evacuated tube collectors had an annual thermal energy output of 2038 kWh and 1383 kWh. The systems were also modeled in TRNSYS and validated with the experimental results. The simulated results showed that Edmonton has the highest annual energy consumption of 3763.4 kWh and 2852.9 kWh by gas boiler and electric tank and that the solar thermal collectors and DWHRs are most beneficial in Edmonton.


Author(s):  
Enrico Zambolin ◽  
Davide Del Col ◽  
Andrea Padovan

New comparative tests on different types of solar collectors are presented in this paper. Tests have been performed at the solar energy conversion laboratory of the University of Padova. Two standard glazed flat plate collectors and one evacuated tube collector are installed in parallel; the evacuated collector is a direct flow through type with external CPC (compound parabolic concentrator) reflectors. The present test rig allows to make measurements on the flat plate, on the evacuated collector or on both simultaneously, by simply acting on the valves to modify the circuit. In this paper measurements of the performance of the evacuated tube collector and flat plate collectors working at the same conditions are reported. Efficiency in stationary conditions is measured following the standard EN 12975-2 [1] and it is compared with the input/output curves measured for an entire day. The main purpose of the present work is to characterize and to compare the daily energy performance of the two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling).


2021 ◽  
Author(s):  
Kamyar Tanha

This thesis is focused on the performance of the two SDHW systems of the sustainable Archetype houses in Vaughan, Ontario with daily hot water consumption of 225 litres. The first system consists of a flat plate solar thermal collector in conjunction with a gas boiler and a DWHR. The second SDHW system consists of an evacuated tube collector, an electric tank and a DWHR. The experimental results showed that the DWHRs were capable of an annual heat recovery of 789 kWh. The flat plate and evacuated tube collectors had an annual thermal energy output of 2038 kWh and 1383 kWh. The systems were also modeled in TRNSYS and validated with the experimental results. The simulated results showed that Edmonton has the highest annual energy consumption of 3763.4 kWh and 2852.9 kWh by gas boiler and electric tank and that the solar thermal collectors and DWHRs are most beneficial in Edmonton.


2021 ◽  
pp. 1-28
Author(s):  
Laveet Kumar ◽  
Md Hasanuzzaman ◽  
Nasrudin Abd Rahim

Abstract In response to the global quest for a sustainable and environmentally friendly source of energy most scientists' discretion is solar energy, especially solar thermal. However, successful deployment of solar thermal technologies such as solar assisted process heating (SAPH) systems in medium- to large-scale industries is still in quandary due to their inefficacy in raising ample temperatures. Cascaded SAPH system, which is essentially a series combination of two same or different types of thermal collectors, may provide a worthwhile solution to this problem. In this article, performance assessment and comparison of two cascaded SAPH systems have been presented: photovoltaic thermal (PVT) cascaded with flat-plate collector (PVT-FPC) and PVT coupled with heat-pipe evacuated tube collector (PVT-HPETC). Simulation models have been presented for individual FPC, HPETC and PVT as well as PVT cascaded with FPC and HPETC systems in TRNSYS and validated through outdoor experimentation. Both the first and the second laws of thermodynamics have been employed to reveal veritable performance of the systems. Results show that PVT-HPETC delivers better performance with 1625 W thermal energy, 81% energy efficiency and 13.22% exergy efficiency. It cuts 1.37 kg of CO2 on an hourly basis. Cascaded systems can be effective in sustaining industrial process heat requirements.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1829 ◽  
Author(s):  
Piotr Olczak ◽  
Dominika Matuszewska ◽  
Jadwiga Zabagło

In Poland, various solar collector systems are used; among them, the most popular are flat plate collectors (FPCs) and evacuated tube collectors (ETCs). The work presents two installations located at a distance of 80 km apart, working in similar external conditions. One of them contains 120 flat plate collectors and works for the preparation of hot water in a swimming pool building; the second one consists of 32 evacuated tube collectors with a heat pipe and supports the preparation of domestic hot water for a multi-family house. During the comparison of the two quite large solar installations, it was confirmed that the use of evacuated tube solar collectors shows a much better solar energy productivity than flat plate collectors for the absorber area. Higher heat solar gains (by 7.9%) were also observed in the case of the gross collector area. The advantages of evacuated tube collectors are observed mainly during colder periods, which allows for a steadier thermal energy production.


2020 ◽  
Vol 4 (1) ◽  
pp. 275-279
Author(s):  
Rusmana ◽  
Kurnia Chandra

Mengingat wilayah Indonesia yang letaknya berada di garis khatulistiwa, sumber energi surya yang diterima Indonesia sangat melimpah. Pemanfaatan yang paling sederhana adalah menjadikan energi surya sebagai sumber panas pada proses pemanasan air. Teknologi kolektor surya merupakan salah satu sarana untuk mengambil panas matahari. Aneka jenis kolektor surya memiliki kinerja yang bervariasi. Kemampuan penyerapan panas yang tinggi dapat diperoleh dari kolektor surya berjenis evacuated tube collector yang mempunyai waktu pemanasan air awal lebih cepat dibandingkan dengan jenis flat plate collector. Penelitian ini bertujuan untuk mengetahui perbandingan efisiensi kolektor surya tabung vakum terhadap solar water heater sederhana. Metode pengujian dilakukan dengan cara memasukan debit air yang sama pada setiap pengujian. Hasil pengujian menunjukkan bahwa solar water heater tabung vakum dengan fluida kerja etanol memberikan efisiensi tertinggi sebesar 44.5% dan efisiensi terendah sebesar 26.4%. Temperatur air output tertinggi mencapai 35,4°C.


2020 ◽  
Vol 8 (24) ◽  
pp. 8120-8124 ◽  
Author(s):  
Kaushik Bairagi ◽  
Sara Catalano ◽  
Francesco Calavalle ◽  
Elisabetta Zuccatti ◽  
Roger Llopis ◽  
...  

Polymer field-effect transistors with 2D graphene electrodes are devices that merge the best of two worlds: on the one hand, the low-cost and processability of organic materials and, on the other hand, the chemical robustness, extreme thinness and flexibility of graphene.


2016 ◽  
pp. 866-885 ◽  
Author(s):  
M. Á. González ◽  
Manuel Á. González ◽  
M. Esther Martín ◽  
César Llamas ◽  
Óscar Martínez ◽  
...  

The use of mobile technologies is reshaping how to teach and learn. In this paper the authors describe their research on the use of these technologies to teach physics. On the one hand they develop mobile applications to complement the traditional learning and to help students learn anytime and anywhere. The use of this applications has proved to have very positive influence on the students' engagement. On the other hand, they use smartphones as measurement devices in physics experiments. This opens the possibility of designing and developing low cost laboratories where expensive material can be substituted by smartphones. The smartphones' sensors are reliable and accurate enough to permit good measurements. However, as it is shown with some examples, special care must be taken here if one does not know how these apps used to access the sensors' data are programmed.


Sign in / Sign up

Export Citation Format

Share Document