Static Analysis of Three-Layered Sandwich Cantilever Beams

1984 ◽  
Vol 106 (4) ◽  
pp. 501-507 ◽  
Author(s):  
S. R. Sharma ◽  
D. K. Rao

A detailed static deflection and stress analysis of three-layered sandwich cantilever beams, subjected to both uniform as well as concentrated loads, is presented here. Three types of boundary conditions dealing with the mechanism of clamping at one edge and generation of “free” edge condition at the other end are investigated. Various graphs are presented showing the effects of geometric and shear parameters on deflections and stresses. They illustrate how the mechanism of “clamping” at one edge and generation of “free” edge condition can be utilized to increase the stiffness of sandwich beams.

Author(s):  
A. V. G. Cavalieri ◽  
W. R. Wolf ◽  
J. W. Jaworski

We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.


1998 ◽  
Vol 65 (2) ◽  
pp. 476-478
Author(s):  
N. Morozov ◽  
I. Sourovtsova

The study of the problem of wave propagation in elastic wedge meets considerable difficulties, which are intensified by the presence of waves of two types that interact with each other through boundary conditions. However, some special surface loading permits separation of the potentials in the boundary conditions, but even in this case the problem cannot be simply reduced to two acoustic ones. The reason for this is that the edge condition cannot be satisfied if the disturbances are limited to a single type (longitudinal or shear). In spite of this the problem, such a special boundary loading nevertheless turns out to be very similar to the acoustic one, which makes it possible to find a closed analytical solution by means of the modified Kostrov method (Kostrov, 1966) and the idea of extension of operators. A similar approach is used for the study of the general problem of loading of the body with several angles.


2015 ◽  
Vol 61 (3) ◽  
pp. 149-168
Author(s):  
A. Szychowski

AbstractBuckling of the stiffened flange of a thin-walled member is reduced to the buckling analysis of the cantilever plate, elastically restrained against rotation, with the free edge stiffener, which is susceptible to deflection. Longitudinal stress variation is taken into account using a linear function and a 2nd degree parabola. Deflection functions for the plate and the stiffener, adopted in the study, made it possible to model boundary conditions and different buckling modes at the occurrence of longitudinal stress variation. Graphs of buckling coefficients are determined for different load distributions as a function of the elastic restraint coefficient and geometric details of the stiffener. Exemplary buckling modes are presented.


Author(s):  
H. J. Schroder

In turbomachines of non-free-vortex design the axisymmetric flow is mostly in a state of “disturbed equilibrium.” Methods of calculating flow fields of this kind were developed nearly 20 years ago. The examples chosen for their demonstration were rather intricate. Here, on the other hand, two very simple examples are produced which provide some insight into the — anything but self-evident — behavior of disturbed equilibrium flow. The examples serve to give some indication as to the use of definite difference methods, including the choice of boundary conditions, and a first attempt at taking incidence at the leading edges of the blades into account.


2013 ◽  
Vol 21 ◽  
pp. 191-192
Author(s):  
MASAYA YATA

We solve the gaugino Dirac equation on a smeared intersecting five-brane solution in E8 × E8 heterotic string theory to search for localized chiral zeromodes on the intersection. The background is chosen to depend on the full two-dimensional overall transverse coordinates to the branes. Under some appropriate boundary conditions, we compute the complete spectrum of zeromodes to find that, among infinite towers of Fourier modes, there exist only three localized normalizable zeromodes, one of which has opposite chirality to the other two.


2011 ◽  
Vol 52-54 ◽  
pp. 511-516 ◽  
Author(s):  
Arup Kumar Borah

In this paper we have studied the streamfunction-vorticity formulation can be advantageously used to analyse steady as well as unsteady incompressible flow and heat transfer problems, since it allows the elimination of pressure from the governing equations and automatically satisfies the continuity constraint. On the other hand, the specification of boundary conditions for the streamfunction-vorticity is not easy and a poor evaluation of these conditions may lead to serious difficulties in obtaining a converged solution. The main issue addressed in this paper is the specification in the boundary conditions in the context of finite element of discretization, but approach utilized can be easily extended to finite volume computations.


Sign in / Sign up

Export Citation Format

Share Document