Interior Flow of a Vertical Jet Under Gravity

1970 ◽  
Vol 37 (2) ◽  
pp. 530-532 ◽  
Author(s):  
William E. Conway ◽  
Jack M. Bullock
Keyword(s):  
1970 ◽  
Vol 23 (3) ◽  
pp. 413-430 ◽  
Author(s):  
S. B. SAVAGE ◽  
G. K. C. CHAN
Keyword(s):  

2012 ◽  
Vol 249 ◽  
pp. 71-81 ◽  
Author(s):  
Michele Andreani ◽  
Ralf Kapulla ◽  
Robert Zboray
Keyword(s):  
Break Up ◽  

2013 ◽  
Vol 712-715 ◽  
pp. 1263-1267
Author(s):  
Shan Tu ◽  
Shu Ming Wu ◽  
Qi Zhou ◽  
Hong Mei Zhang ◽  
Xiao Qing Zhu

The main inlet component of steam turbine is control valve. The stable operation of the steam turbine control valve is vital for safe and stable operation of the steam turbine and safety production of the power plant. However, due to the complexity of the structure and unsteady characteristics of steam flow in the valve, there is not enough experimental method about the detailed flow characteristics of the area near control valve disc and the inside of the valve chamber up to now. This article is to focus on the simulation of the steam turbine control valve interior flow field which includes the valve pre-inlet channel in different conditions, then find the reasons which caused instability and pressure loss of the control valve by analyzing the flow field details, finally further optimization design. The profile matching of the valve disc and valve seat has a great influence on the interior flow field of control valve, so analysis of the high performance valve disc shape and divergence angle of valve seat is carried out, and the research conclusion is used for guide design and development of the control valve.


Author(s):  
Qingming Dong ◽  
Zhentao Wang ◽  
Yonghui Zhang ◽  
Junfeng Wang

In this present study, the VOF (Volume of Fluid) approach is adopted to capture the interface, and CSF (Continuum Surface Force) model to calculate the surface tension, and the governing equations are founded in numerical simulation of evaporating droplets. In this work, a water droplet is assumed to be suspending in high temperature air, and the gravity of a droplet is ignored. During evaporating process of the droplet, the internal circulation flow will be induced due to the gradient of temperature at the droplet surface. The interface flows from high temperature area to low temperature area, which pulls the liquid to produce convective flow inside the droplet called as Marangoni flow. Marangoni flow makes the temperature distribution tend to uniformity, which enhances heat transfer but weakens Marangoni flow in turn. So, during droplet evaporation, the internal flow is not steady.


Particuology ◽  
2017 ◽  
Vol 31 ◽  
pp. 95-104 ◽  
Author(s):  
Shuyan Wang ◽  
Baoli Shao ◽  
Xiangyu Li ◽  
Jian Zhao ◽  
Lili Liu ◽  
...  

2021 ◽  
Author(s):  
Keren Duer ◽  
Eli Galanti ◽  
Yohai Kaspi

<p>The asymmetric gravity field measured by the Juno spacecraft has allowed the estimation of the depth of Jupiter's zonal jets, showing that the winds extend approximately 3,000 km beneath the cloud level. This estimate was based on an analysis using a combination of all measured odd gravity harmonics, <em>J</em><sub>3</sub>, <em>J</em><sub>5</sub>, <em>J</em><sub>7</sub>, and <em>J</em><sub>9</sub>, but the wind profile's dependence on each of them separately has yet to be investigated. Furthermore, these calculations assumed the meridional profile of the cloud‐level wind extends to depth. However, it is possible that the interior jet profile varies somewhat from that of the cloud level. Here we analyze in detail the possible meridional and vertical structure of Jupiter's deep jet streams that can match the gravity measurements. We find that each odd gravity harmonic constrains the flow at a different depth, with <em>J</em><sub>3</sub> the most dominant at depths below 3,000 km, <em>J</em><sub>5</sub> the most restrictive overall, whereas <em>J</em><sub>9</sub> does not add any constraint on the flow if the other odd harmonics are considered. Interior flow profiles constructed from perturbations to the cloud‐level winds allow a more extensive range of vertical wind profiles, yet when the meridional profiles differ substantially from the cloud level, the ability to match the gravity data significantly diminishes. Overall, we find that while interior wind profiles that do not resemble the cloud level are possible, they are statistically unlikely. Finally, inspired by the Juno microwave radiometer measurements, assuming the brightness temperature is dominated by the ammonia abundance, we find that depth‐dependent flow profiles are still compatible with the gravity measurements.</p>


1984 ◽  
Vol 1984 (342) ◽  
pp. 161-169
Author(s):  
Hiroshi MURASHIGE ◽  
Yoshitaka FUKUI ◽  
Hideo KIKKAWA

1968 ◽  
Vol 34 (4) ◽  
pp. 721-734 ◽  
Author(s):  
J. A. Johnson

A linear three-dimensional model of the wind-driven ocean circulation is treated by boundary-layer methods. The interior flow, below the Ekman layer, differs from the classical gyres of Munk (1950). There is a north-eastwards transport of fluid from the western boundary current of the southern gyre across the latitude of zero wind stress curl into the northern gyre. A return flow in the Ekman layer preserves continuity.


Sign in / Sign up

Export Citation Format

Share Document