General Deformations of Neo-Hookean Membranes

1973 ◽  
Vol 40 (1) ◽  
pp. 7-12 ◽  
Author(s):  
W. H. Yang ◽  
C. H. Lu

A set of three nonlinear partial-differential equations is derived for general finite deformations of a thin membrane. The material that composes the membrane is assumed to be hyperelastic. Its mechanical property is represented by the neo-Hookean strain-energy function. The equations reduce to special cases known in the literature. A fast convergent algorithm is developed. The numerical solutions to the finite-difference approximation of the differential equations are computed iteratively with a trivial initial iterant. As an example, the problem of inflating a rectangular membrane with fixed edges by a uniform pressure applied on one side is presented. The solutions and their convergence are displayed and discussed.

1972 ◽  
Vol 39 (2) ◽  
pp. 491-494 ◽  
Author(s):  
K. H. Hsu

A general approach to the numerical solutions for axially symmetric membrane problem is presented. The formulation of the problem leads to a system of first-order nonlinear differential equations. These equations are formulated such that the numerical integration can be carried out for any form of strain-energy function. Solutions to these equations are feasible for various boundary conditions. In this paper, these equations are applied to the problem of a bonded toroid under inflation. A bonded toroid, which is in the shape of a tubeless tire, has its two circular edges rigidly bonded to a rim. The Runge-Kutta method is employed to solve the system of differential equations, in which Mooney’s form of strain-energy function is adopted.


1966 ◽  
Vol 6 (03) ◽  
pp. 217-227 ◽  
Author(s):  
Hubert J. Morel-Seytoux

Abstract The influence of pattern geometry on assisted oil recovery for a particular displacement mechanism is the object of investigation in this paper. The displacement is assumed to be of unit mobility ratio and piston-like. Fluids are assumed incompressible and gravity and capillary effects are neglected. With these assumptions it is possible to calculate by analytical methods the quantities of interest to the reservoir engineer for a great variety of patterns. Specifically, this paper presentsvery briefly, the methods and mathematical derivations required to obtain the results of engineering concern, andtypical results in the form of graphs or formulae that can be used readily without prior study of the methods. Results of this work provide checks for solutions obtained from programmed numerical techniques. They also reveal the effect of pattern geometry and, even though the assumptions of piston-like displacement and of unit mobility ratio are restrictive, they can nevertheless be used for rather crude but quick, cheap estimates. These estimates can be refined to account for non-unit mobility ratio and two-phase flow by correlating analytical results in the case M=1 and the numerical results for non-Piston, non-unit mobility ratio displacements. In an earlier paper1 it was also shown that from the knowledge of closed form solutions for unit mobility ratio, quantities called "scale factors" could be readily calculated, increasing considerably the flexibility of the numerical techniques. Many new closed form solutions are given in this paper. INTRODUCTION BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected. BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected.


Author(s):  
B. V. Rathish Kumar ◽  
Gopal Priyadarshi

We describe a wavelet Galerkin method for numerical solutions of fourth-order linear and nonlinear partial differential equations (PDEs) in 2D and 3D based on the use of Daubechies compactly supported wavelets. Two-term connection coefficients have been used to compute higher-order derivatives accurately and economically. Localization and orthogonality properties of wavelets make the global matrix sparse. In particular, these properties reduce the computational cost significantly. Linear system of equations obtained from discretized equations have been solved using GMRES iterative solver. Quasi-linearization technique has been effectively used to handle nonlinear terms arising in nonlinear biharmonic equation. To reduce the computational cost of our method, we have proposed an efficient compression algorithm. Error and stability estimates have been derived. Accuracy of the proposed method is demonstrated through various examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Don Liu ◽  
Qin Chen ◽  
Yifan Wang

A system of coupled nonlinear partial differential equations with convective and dispersive terms was modified from Boussinesq-type equations. Through a special formulation, a system of nonlinear partial differential equations was solved alternately and explicitly in time without linearizing the nonlinearity. Coupled compact schemes of sixth order accuracy in space were developed to obtain numerical solutions. Within couple compact schemes, variables and their first and second derivatives were solved altogether. The sixth order accuracy in space is achieved with a memory-saving arrangement of state variables so that the linear system is banded instead of blocked. This facilitates solving very large systems. The efficiency, simplicity, and accuracy make this coupled compact method viable as variational and weighted residual methods. Results were compared with exact solutions which were obtained via devised forcing terms. Error analyses were carried out, and the sixth order convergence in space and second order convergence in time were demonstrated. Long time integration was also studied to show stability and error convergence rates.


Author(s):  
Edson Pindza ◽  
M. K. Owolabi ◽  
K.C. Patidar

AbstractNumerical solutions of nonlinear partial differential equations, such as the generalized and extended Burgers-Huxley equations which combine effects of advection, diffusion, dispersion and nonlinear transfer are considered in this paper. Such system can be divided into linear and nonlinear parts, which allow the use of two numerical approaches. Barycentric Jacobi spectral (BJS) method is employed for the spatial discretization, the resulting nonlinear system of ordinary differential equation is advanced with a fourth-order exponential time differencing predictor corrector. Comparative numerical results for the values of options are presented. The proposed method is very elegant from the computational point of view. Numerical computations for a wide variety of problems, show that the present method offers better accuracy and efficiency in comparison with other previous methods. Moreover the method can be applied to a wide class of nonlinear partial differential equations.


2009 ◽  
Vol 50 (4) ◽  
pp. 541-549 ◽  
Author(s):  
ROBERT A. VAN GORDER ◽  
K. VAJRAVELU

AbstractIn this paper, we extend the results in the literature for boundary layer flow over a horizontal plate, by considering the buoyancy force term in the momentum equation. Using a similarity transformation, we transform the partial differential equations of the problem into coupled nonlinear ordinary differential equations. We first analyse several special cases dealing with the properties of the exact and approximate solutions. Then, for the general problem, we construct series solutions for arbitrary values of the physical parameters. Furthermore, we obtain numerical solutions for several sets of values of the parameters. The numerical results thus obtained are presented through graphs and tables and the effects of the physical parameters on the flow and heat transfer characteristics are discussed. The results obtained reveal many interesting behaviours that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.


Author(s):  
James M. Hill

AbstractFor isotropic incompressible hyperelastic materials the single function characterizing generalized shear deformations or as they are sometimes called anti-plane strain deformations must satisfy two distinct partial differential equations. Knowles [5] has recently given a necessary and sufficient condition for the strain–energy function of the material which if satisfied ensures that the two equations have consistent solutions. It is shown here for the general material not satisfying Knowles' criterion that the only possible consistent solution of the two partial differential equations are those which are already known to exist for all strain–energy functions. More general types of generalized shear deformations for such meterials are shown to exist only for special or restricted form ot the strain-energy function. In derving these results we also obtain an alternative derivation of Knowles' criterion.


Sign in / Sign up

Export Citation Format

Share Document