A Design Oriented Approach to Creep and Plasticity in Finite Element Programs

1971 ◽  
Vol 93 (3) ◽  
pp. 793-798 ◽  
Author(s):  
E. A. Wilson

This paper presents procedures for introducing plasticity and creep into finite element programs. The plasticity method described is intended for the designer who is interested in the stress distribution under prescribed loading conditions. The plasticity method uses a “relaxing approach” with initial strain equations. As a natural extension of the initial strain equations, creep is also presented. With both plasticity and creep available, a finite element program can be used to examine the stresses during the duty cycle of a piece of hardware. Examples of highly stressed turbine disks are shown.

2015 ◽  
Vol 744-746 ◽  
pp. 474-478
Author(s):  
Yong Jiang Shen ◽  
Ming Yang ◽  
Hai Hao Cui ◽  
Zheng Liang Xiang ◽  
Yao Zhuang Li ◽  
...  

Soil arch plays an important role in the landslides reinforced by stabilizing piles . A method was presented to determine the range of soil arching ring. The method proposed was achieved by finite element program and the stress distribution of soil arch with different landslide thrust was analyzed. The results show that the thickness of soil arching ring is variable. The mid-span section of soil arching ring is the minimum. The arch ring becomes thicker from the mid-span axis to the arch feet. With the increase of landslide thrust, the soil arching ring becomes thicker and thicker. At last ,the monitoring data of a model test is studied and the results are consistent with that of numerical simulation.


Author(s):  
Darmawan Harsokoesoemo ◽  
Gatot Santoso

Numerically calculated stress in the region of two normally intersecting pipes due to in-plane bending moments using finite element program MECHANICA are presented in this paper. The computer results were processed and then presented in stress versus location (along several lines) diagrams. Other investigators’ results for similar problem are not easy to obtain due to differences in the problem, in modelling, in finite element program used and in methods of data presentation. Lock et al (1985) and Moffat et al (1984) works were the closest for comparison purposes.


Author(s):  
Meer Rownaq Ali Abbasi ◽  
Dileep Nag Vinnakota ◽  
Vijaya Sankar V ◽  
Rekhalakshmi Kamatham

Introduction. One of the principle factors for the success of implant supported/retained overdentures (IOs) is the manner in which the stresses are transferred to the surrounding bone. Hence, the aim of the present study is to compare the stress induced in the mandible around IOs, using two different attachment systems, locator and telescopic. Methods. 3D finite element models were prepared using Pro/ENGINEER or PTC Creo to simulate 4 clinical situations: IOs using two different attachment systems, locator and telescopic, with and without splinting. A vertical compressive load of 35N was directed toward the central fossa in the molar region of each overdenture. Non-linear static contact analysis was carried out to determine the stress distribution in various components of IOs. Then, the models were analyzed by a finite element program ABAQUS, and displayed using Von Mises stress patterns. Results. The contact stress values developed on the implant and attachment components were lower with locator attachment, in both splinted and non-splinted models. On the other hand, the stress distribution to the cortical bone was more with non-splinted/splinted locator attachments (3.73/4.12 Mega Pascals) when compared to the non-splinted/splinted telescopic attachments (2.66/3.7 Mega Pascals). The stresses in all the components of overdenture were greater with the splinted model compared to non-splinted, in both the attachment systems.  Conclusion. The locator attachment might demonstrate superior clinical performance, as the stresses on implant and attachment components were less compared to telescopic. Non-splinted model showed better results in both the attachment types.


2015 ◽  
Vol 09 (02) ◽  
pp. 255-261 ◽  
Author(s):  
Ritesh Modi ◽  
Shivani Kohli ◽  
K. Rajeshwari ◽  
Shekhar Bhatia

ABSTRACT Objective: The aim of the study is to evaluate the stress distribution in tooth supported 5-unit fixed partial denture (FPD) having tooth as pier abutment using rigid and nonrigid connectors respectively, under simultaneous and progressive loading. Material and Methods: The three-dimensional (3D) finite element program (ANSYS software) was used to construct the mathematical model. Two 5-unit FPD'S were simulated, one with rigid connector and another one with nonrigid connector. For analysis, each of these models were subjected to axial and oblique forces under progressive loading (180, 180, 120, 120, 80 N force on first and second molars, premolars and canine respectively) and simultaneous loading (100, 100, 100, 100, 100 N force on first and second molars, premolars and canine respectively). Results: The rigid and nonrigid connector design have effect on stress distribution in 5-unit FPDs with pier abutments. Conclusion: Oblique forces produce more stresses than vertical forces. Nonrigid connector resulted in decrease in stress at the level of prosthesis and increase in stress at the level of alveolar crest.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Auchar Zardari ◽  
Hans Mattsson ◽  
Sven Knutsson ◽  
Muhammad Shehzad Khalid ◽  
Maria V. S. Ask ◽  
...  

Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.


1981 ◽  
Vol 17 (12) ◽  
pp. 1779-1789
Author(s):  
E. Haugeneder ◽  
W. Prochazka ◽  
P. Tavolato

Sign in / Sign up

Export Citation Format

Share Document