On The Nature of Jets Entering A Turbulent Flow: Part A—Jet–Mainstream Interaction

1979 ◽  
Vol 101 (3) ◽  
pp. 459-465 ◽  
Author(s):  
K. Kadotani ◽  
R. J. Goldstein

The effects of mainstream turbulence intensity between 0.3 percent and 20.6 percent and turbulence scale between 0.06 and 0.33 jet entrance diameters on heated and unheated subsonic jets issuing from a row of inclined round holes into a turbulent boundary layer are reported. Time averaged and instantaneous velocities and the mean temperature are measured in the flow. The mainstream turbulence scale has a significant effect on the temperature distribution of the injected jets and on the instantaneous velocity profiles of the flow following injection. When the mainstream turbulence scale is large, the injected jets are well mixed with the mainstream; when the scale is small, the injected jets are well preserved and the effect of vortex motion upon the temperature distribution becomes significant.

2019 ◽  
Vol 863 ◽  
pp. 454-493 ◽  
Author(s):  
Qian-Cheng Wang ◽  
Zhen-Guo Wang ◽  
Ming-Bo Sun ◽  
Rui Yang ◽  
Yu-Xin Zhao ◽  
...  

Direct numerical simulation is conducted to uncover the response of a supersonic turbulent boundary layer to streamwise concave curvature and the related physical mechanisms at a Mach number of 2.95. Streamwise variations of mean flow properties, turbulence statistics and turbulent structures are analysed. A method to define the boundary layer thickness based on the principal strain rate is proposed, which is applicable for boundary layers subjected to wall-normal pressure and velocity gradients. While the wall friction grows with the wall turning, the friction velocity decreases. A logarithmic region with constant slope exists in the concave boundary layer. However, with smaller slope, it is located lower than that of the flat boundary layer. Streamwise varying trends of the velocity and the principal strain rate within different wall-normal regions are different. The turbulence level is promoted by the concave curvature. Due to the increased turbulence generation in the outer layer, secondary bumps are noted in the profiles of streamwise and spanwise turbulence intensity. Peak positions in profiles of wall-normal turbulence intensity and Reynolds shear stress are pushed outward because of the same reason. Attributed to the Görtler instability, the streamwise extended vortices within the hairpin packets are intensified and more vortices are generated. Through accumulations of these vortices with a similar sense of rotation, large-scale streamwise roll cells are formed. Originated from the very large-scale motions and by promoting the ejection, sweep and spanwise events, the formation of large-scale streamwise roll cells is the physical cause of the alterations of the mean properties and turbulence statistics. The roll cells further give rise to the vortex generation. The large number of hairpin vortices formed in the near-wall region lead to the improved wall-normal correlation of turbulence in the concave boundary layer.


1979 ◽  
Vol 101 (3) ◽  
pp. 466-470 ◽  
Author(s):  
K. Kadotani ◽  
R. J. Goldstein

The effects of mainstream turbulence intensity between 0.3 percent and 20.6 percent and turbulence scale between 0.06 and 0.33 jet entrance diameters on heated subsonic jets issuing from a row of inclined round holes into a turbulent boundary layer are investigated from the view point of film cooling effectiveness. At low blowing rate the injected jets stay close to the wall and are sensitive to the turbulent mixing resulting in a decrease of centerline effectiveness with an increase of mainstream turbulence intensity. At high blowing rate the centerline effectiveness increases with the mainstream turbulence intensity because of smaller penetration of the injected jets due to the greater mixing with the mainstream and to the thinner boundary layer of the mainstream. At moderate turbulence intensity, the turbulence scale has a significant effect upon the lateral distribution of effectiveness through vortex formation.


2018 ◽  
Vol 32 (12n13) ◽  
pp. 1840051
Author(s):  
Zhao Zhang ◽  
Yang Tao ◽  
Neng Xiong ◽  
Fengxue Qian

The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.


1970 ◽  
Vol 42 (2) ◽  
pp. 349-365 ◽  
Author(s):  
Robert R. Long

An effort is made to understand turbulence in fluid systems like the oceans and atmosphere in which the Richardson number is generally large. Toward this end, a theory is developed for turbulent flow over a flat plate which is moved and cooled in such a way as to produce constant vertical fluxes of momentum and heat. The theory indicates that in a co-ordinate system fixed in the plate the mean velocity increases linearly with heightzabove a turbulent boundary layer and the mean density decreases asz3, so that the Richardson number is large far from the plate. Near the plate, the results reduce to those of Monin & Obukhov.Thecurvatureof the density profile is essential in the formulation of the theory. When the curvature is negative, a volume of fluid, thoroughly mixed by turbulence, will tend to flatten out at a new level well above the original centre of mass, thereby transporting heat downward. When the curvature is positive a mixed volume of fluid will tend to fall a similar distance, again transporting heat downward. A well-mixed volume of fluid will also tend to rise when the density profile is linear, but this rise is negligible on the basis of the Boussinesq approximation. The interchange of fluid of different, mean horizontal speeds in the formation of the turbulent patch transfers momentum. As the mixing in the patch destroys the mean velocity shear locally, kinetic energy is transferred from mean motion to disturbed motion. The turbulence can arise in spite of the high Richardson number because the precise variations of mean density and mean velocity mentioned above permit wave energy to propagate from the turbulent boundary layer to the whole region above the plate. At the levels of reflexion, where the amplitudes become large, wave-breaking and turbulence will tend to develop.The relationship between the curvature of the density profile and the transfer of heat suggests that the density gradient near the level of a point of inflexion of the density curve (in general cases of stratified, shearing flow) will increase locally as time goes on. There will also be a tendency to increase the shear through the action of local wave stresses. If this results in a progressive reduction in Richardson number, an ultimate outbreak of Kelvin–Helmholtz instability will occur. The resulting sporadic turbulence will transfer heat (and momentum) through the level of the inflexion point. This mechanism for the appearance of regions of low Richardson number is offered as a possible explanation for the formation of the surfaces of strong density and velocity differences observed in the oceans and atmosphere, and for the turbulence that appears on these surfaces.


2018 ◽  
Vol 857 ◽  
pp. 449-468 ◽  
Author(s):  
Zhen-Su She ◽  
Hong-Yue Zou ◽  
Meng-Juan Xiao ◽  
Xi Chen ◽  
Fazle Hussain

A recently developed symmetry-based theory is extended to derive an algebraic model for compressible turbulent boundary layers (CTBL) – predicting mean profiles of velocity, temperature and density – valid from incompressible to hypersonic flow regimes, thus achieving a Mach number ($Ma$) invariant description. The theory leads to a multi-layer analytic form of a stress length function which yields a closure of the mean momentum equation. A generalized Reynolds analogy is then employed to predict the turbulent heat transfer. The mean profiles and the friction coefficient are compared with direct numerical simulations of CTBL for a range of$Ma$from 0 (e.g. incompressible) to 6.0 (e.g. hypersonic), with an accuracy notably superior to popular current models such as Baldwin–Lomax and Spalart–Allmaras models. Further analysis shows that the modification is due to an improved eddy viscosity function compared to competing models. The results confirm the validity of our$Ma$-invariant stress length function and suggest the path for developing turbulent boundary layer models which incorporate the multi-layer structure.


2018 ◽  
Vol 17 (4-5) ◽  
pp. 438-466 ◽  
Author(s):  
Baofeng Cheng ◽  
Yiqiang Han ◽  
Kenneth S Brentner ◽  
Jose Palacios ◽  
Philip J Morris ◽  
...  

The change of helicopter rotor broadband noise due to different surface roughness during ice accretion is investigated. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand facility at The Pennsylvania State University, and the University of Maryland Acoustic Chamber. In both facilities, the measured high-frequency broadband noise increases significantly with increasing surface roughness height. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is thought to be turbulent boundary layer-trailing edge noise. Theory suggests turbulent boundary layer-trailing edge noise scales with Mach number to the fifth power, which is also observed in the experimental data confirming that the dominant broadband noise mechanism during ice accretion is trailing edge noise. A correlation between the ice-induced surface roughness and the broadband noise level is developed. The correlation is strong, which can be used as an ice accretion early detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of two-dimensional airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the turbulent boundary layer-trailing edge noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe’s trailing edge noise model, the increased sound pressure level of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased sound pressure level values agree reasonably well with the experimental results, which are 5.8 and 2.6 dB for large and small roughness height, respectively.


2021 ◽  
Author(s):  
Grigory Zasko ◽  
Andrey Glazunov ◽  
Evgeny Mortikov ◽  
Yuri Nechepurenko ◽  
Pavel Perezhogin

<p>In this report, we will try to explain the emergence of large-scale organized structures in stably stratified turbulent flows using optimal disturbances of the mean turbulent flow. These structures have been recently obtained in numerical simulations of turbulent stably stratified flows [1] (Ekman layer, LES) and [2] (plane Couette flow, DNS and LES) and indirectly confirmed by field measurements in the stable boundary layer of the atmosphere [1, 2]. In instantaneous temperature fields they manifest themselves as irregular inclined thin layers with large gradients (fronts), spaced from each other by distances comparable to the height of the entire turbulent layer, and separated by regions with weak stratification.</p><p>Optimal disturbances of a stably stratified turbulent plane Couette flow are investigated in a wide range of Reynolds and Richardson numbers. These disturbances were computed based on a simplified linearized system of equations in which turbulent Reynolds stresses and heat fluxes were approximated by isotropic viscosity and diffusion with coefficients obtained from DNS results. It was shown [3] that the spatial scales and configurations of the inclined structures extracted from DNS data coincide with the ones obtained from optimal disturbances of the mean turbulent flow.</p><p>Critical value of the stability parameter is found starting from which the optimal disturbances resemble inclined structures. The physical mechanisms that determine the evolution, energetics and spatial configuration of these optimal disturbances are discussed. The effects due to the presence of stable stratification are highlighted.</p><p>Numerical experiments with optimal disturbances were supported by the RSF (grant No. 17-71-20149). Direct numerical simulation of stratified turbulent Couette flow was supported by the RFBR (grant No. 20-05-00776).</p><p>References:</p><p>[1] P.P. Sullivan, J.C. Weil, E.G. Patton, H.J. Jonker, D.V. Mironov. Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer // J. Atmos. Sci., 2016, V. 73, P. 1815-1840.</p><p>[2] A.V. Glazunov, E.V. Mortikov, K.V. Barskov, E.V. Kadantsev, S.S. Zilitinkevich. Layered structure of stably stratified turbulent shear flows // Izv. Atmos. Ocean. Phys., 2019, V. 55, P. 312–323.</p><p>[3] G.V. Zasko, A.V. Glazunov, E.V. Mortikov, Yu.M. Nechepurenko. Large-scale structures in stratified turbulent Couette flow and optimal disturbances // Russ. J. Num. Anal. Math. Model., 2010, V. 35, P. 35–53.</p>


1997 ◽  
Vol 119 (2) ◽  
pp. 277-280 ◽  
Author(s):  
B. A. Singer

Models for the distribution of the wall-pressure under a turbulent boundary layer often estimate the coherence of the cross-spectral density in terms of a product of two coherence functions. One such function describes the coherence as a function of separation distance in the mean-flow direction, the other function describes the coherence in the cross-stream direction. Analysis of data from a large-eddy simulation of a turbulent boundary layer reveals that this approximation dramatically underpredicts the coherence for separation directions that are neither aligned with nor perpendicular to the mean-flow direction. These models fail even when the coherence functions in the directions parallel and perpendicular to the mean flow are known exactly. A new approach for combining the parallel and perpendicular coherence functions is presented. The new approach results in vastly improved approximations for the coherence.


Sign in / Sign up

Export Citation Format

Share Document