scholarly journals Discussion: “A Calculation Procedure for Three-Dimensional, Viscous, Compressible Duct Flow. Part II—Stagnation Pressure Losses in a Rectangular Elbow” (Moore, John, and Moore, Joan G., 1979, ASME J. Fluids Eng., 101, pp. 423–428)

1979 ◽  
Vol 101 (4) ◽  
pp. 428-428
Author(s):  
T. J. Barber
1979 ◽  
Vol 101 (4) ◽  
pp. 423-428 ◽  
Author(s):  
John Moore ◽  
Joan G. Moore

Three-dimensional, turbulent flow is calculated in an elbow used by Stanitz for an experimental investigation of secondary flow. Calculated wall-static pressure distributions and distributions of stagnation-pressure loss, both spatial and as a function of mass-flow ratio, are in good agreement with Stanitz’ measurements, justifying the use of a relatively simple mixing-length viscosity model. The calculation procedure and the results of two-dimensional “inviscid” flow calculations used as the starting point for the present calculations are described in Part I of this paper. The computed flow field shows clearly the development of the passage vortices.


Author(s):  
Tim A. Handy ◽  
Evan C. Lemley ◽  
Dimitrios V. Papavassiliou ◽  
Henry J. Neeman

The goal of this study was to determine laminar stagnation pressure loss coefficients for circular ducts in which flow encounters a planar bifurcation. Flow conditions and pressure losses in these laminar bifurcations are of interest in microfluidic devices, in porous media, and in other networks of small ducts or pores. Until recently, bifurcation geometries had been studied almost exclusively for turbulent flow, which is often found in fluid supply and drain systems. Recently, pressure loss coefficients from simulations of a few arbitrary bifurcation geometries in two-dimensions have been published — the present study describes the extension of these two-dimensional simulations to three-dimensional circular ducts. The pressure loss coefficients determined in this study are intended to allow realistic simulation of existing laminar flow networks or the design of these networks. This study focused on a single inlet duct with two outlet ducts, which were allowed to vary in diameter, flow fraction, and angle — all relative to the inlet duct. All ducts considered in this study were circular with their axes in a common plane. Laminar stagnation pressure loss coefficients were determined by simulating incompressible flow through 475 different geometries and flow condition combinations. In all cases, the flow was laminar in the inlet and outlet ducts with a Reynolds number of 15 in the inlet duct. Simulations of the dividing flow geometries were done using FLUENT and a custom written computer code, which automated the process of creating the three-dimensional flow geometries. The outputs, pressure and velocity distributions at the inlet and outlets, were averaged over the circular ducts and then used to calculate pressure loss coefficients for each of the geometries and flow fraction scenarios simulated. The results for loss coefficient for the geometries considered ranged from 2.0 to 70. The loss coefficient for any geometry increased significantly as the outlet flow fraction increased. A consistent increase in loss coefficient was also observed as a function of decreasing outlet duct diameter. Less significant variation of the loss coefficient was observed as a function of the angles of the outlet ducts.


1982 ◽  
Author(s):  
M. W. Johnson ◽  
J. Moore

Three-dimensional flows and their influence on the stagnation pressure losses in a centrifugal compressor impeller have been studied. All 3 mutally perpendicular components of relative velocity and stagnation pressure on 5 cross-sectional planes, between the inlet and outlet of a 1 m dia shrouded impeller running at 500 rpm were measured. Comparisons were made between results for a flow rate corresponding to nearly zero incidence angle and two other flows, with increased and reduced flow rates. These detailed measurements show how the position of separation of the shroud boundary layer moved downstream and the wake’s size decreased, as the flow rate was increased. The wake’s location, at the outlet of the impeller, was also observed to move from the suction surface at the lowest flow rate, to the shroud at higher flow rates.


1981 ◽  
Vol 103 (2) ◽  
pp. 367-372 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore

A partially-parabolic calculation procedure is used to calculate flow in a centrifugal impeller. This general-geometry, cascade-flow method is an extension of a duct-flow calculation procedure. The three-dimensional pressure field within the impeller is obtained by first performing a three-dimensional inviscid flow calculation and then adding a viscosity model and a viscous-wall boundary condition to allow calculation of the three-dimensional viscous flow. Wake flow, resulting from boundary layer accumulation in an adverse reduced-pressure gradient, causes blockage of the impeller passage and results in significant modifications of the pressure field. Calculated wake development and pressure distributions are compared with measurements.


1979 ◽  
Vol 101 (4) ◽  
pp. 415-422 ◽  
Author(s):  
John Moore ◽  
Joan G. Moore

A method for computing three-dimensional duct flows is described. The procedure involves iteration between a marching integration of the conservation equations through the flow field and the solution of an elliptic pressure-correction equation. The conservation equations are written in orthogonal curvilinear coordinates. The solution procedure is illustrated by calculations of two-dimensional flow in an accelerating rectangular elbow with 90 deg of turning. An approach to calculating three-dimensional viscous flow, starting with the solution for two-dimensional inviscid flow is suggested. This approach is used in Part II which starts with the results of the present two-dimensional “inviscid” flow calculations.


1983 ◽  
Vol 105 (1) ◽  
pp. 33-39 ◽  
Author(s):  
M. W. Johnson ◽  
J. Moore

Three-dimensional flows and their influence on the stagnation pressure losses in a centrifugal compressor impeller have been studied. All three mutually perpendicular components of relative velocity and stagnation pressure on five cross-sectional planes, between the inlet and outlet of a 1-m dia shrouded impeller running at 500 rpm were measured. Comparisons were made between results for a flow rate corresponding to nearly zero incidence angle and two other flows, with increased and reduced flow rates. These detailed measurements show how the position of separation of the shroud boundary layer moved downstream and the wake’s size decreased, as the flow rate was increased. The wake’s location, at the outlet of the impeller, was also observed to move from the suction surface at the lowest flow rate, to the shroud at higher flow rates.


Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


Author(s):  
Anil K. Tolpadi ◽  
Mark E. Braaten

An important requirement in the design of an inlet duct of a turboprop engine is the ability to provide foreign object damage protection. A possible method for providing this protection is to include a bypass branch duct as an integral part of the main inlet duct. This arrangement would divert ingested debris away from the engine through the bypass. However, such an arrangement could raise the possibility of separated flow in the inlet, which in turn can increase pressure losses if not properly accounted for during the design. A fully elliptic three-dimensional body-fitted computational fluid dynamics (CFD) code based on pressure correction techniques has been developed that has the capability of performing multiple block grid calculations compatible with present day turboshaft and turboprop branched inlet ducts. Calculations are iteratively performed between sets of overlapping grids with one grid representing the main duct and a second grid representing the branch duct. Both the grid generator and the flow solver have been suitably developed to achieve this capability. The code can handle multiple branches in the flow. Using the converged flow field from this code, another program was written to perform a particle trajectory analysis. Numerical solutions were obtained on a supercomputer for a typical branched duct for which experimental flow and pressure measurements were also made. The flow separation zones predicted by the calculations were found to be in good agreement with those observed in the experimental tests. The total pressure recovery factors measured in the experiments were also compared with those obtained numerically. Within the limits of the grid resolution and the turbulence model, the agreement was found to be fairly good. In order to simulate the path of debris entering the duct, the trajectories of spherical particles of different sizes introduced at the inlet were determined.


Sign in / Sign up

Export Citation Format

Share Document